Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Hum Genet ; 104(5): 847-860, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051113

RESUMEN

Collagen type IV alpha 1 and alpha 2 chains form heterotrimers ([α1(IV)]2α2(IV)) that represent a fundamental basement membrane constituent. Dominant COL4A1 and COL4A2 mutations cause a multisystem disorder that is marked by clinical heterogeneity and variable expressivity and that is generally characterized by the presence of cerebrovascular disease with ocular, renal, and muscular involvement. Despite the fact that muscle pathology is reported in up to one-third of individuals with COL4A1 and COL4A2 mutations and in animal models with mutations in COL4A1 and COL4A2 orthologs, the pathophysiological mechanisms underlying COL4A1-related myopathy are unknown. In general, mutations are thought to impair [α1(IV)]2α2(IV) secretion. Whether pathogenesis results from intracellular retention, extracellular deficiency, or the presence of mutant proteins in basement membranes represents an important gap in knowledge and a major obstacle for developing targeted interventions. We report that Col4a1 mutant mice develop progressive neuromuscular pathology that models human disease. We demonstrate that independent muscular, neural, and vascular insults contribute to neuromyopathy and that there is mechanistic heterogeneity among tissues. Importantly, we provide evidence of a COL4A1 functional subdomain with disproportionate significance for tissue-specific pathology and demonstrate that a potential therapeutic strategy aimed at promoting [α1(IV)]2α2(IV) secretion can ameliorate or exacerbate myopathy in a mutation-dependent manner. These data have important translational implications for prediction of clinical outcomes based on genotype, development of mechanism-based interventions, and genetic stratification for clinical trials. Collectively, our data underscore the importance of the [α1(IV)]2α2(IV) network as a multifunctional signaling platform and show that allelic and tissue-specific mechanistic heterogeneities contribute to the variable expressivity of COL4A1 and COL4A2 mutations.


Asunto(s)
Colágeno Tipo IV/genética , Enfermedades Musculares/etiología , Mutación , Enfermedades Neuromusculares/etiología , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades Musculares/patología , Enfermedades Neuromusculares/patología , Especificidad de Órganos , Fenotipo
2.
Brain ; 141(1): 85-98, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29244098

RESUMEN

Hypoxia can injure brain white matter tracts, comprised of axons and myelinating oligodendrocytes, leading to cerebral palsy in neonates and delayed post-hypoxic leukoencephalopathy (DPHL) in adults. In these conditions, white matter injury can be followed by myelin regeneration, but myelination often fails and is a significant contributor to fixed demyelinated lesions, with ensuing permanent neurological injury. Non-myelinating oligodendrocyte precursor cells are often found in lesions in plentiful numbers, but fail to mature, suggesting oligodendrocyte precursor cell differentiation arrest as a critical contributor to failed myelination in hypoxia. We report a case of an adult patient who developed the rare condition DPHL and made a nearly complete recovery in the setting of treatment with clemastine, a widely available antihistamine that in preclinical models promotes oligodendrocyte precursor cell differentiation. This suggested possible therapeutic benefit in the more clinically prevalent hypoxic injury of newborns, and we demonstrate in murine neonatal hypoxic injury that clemastine dramatically promotes oligodendrocyte precursor cell differentiation, myelination, and improves functional recovery. We show that its effect in hypoxia is oligodendroglial specific via an effect on the M1 muscarinic receptor on oligodendrocyte precursor cells. We propose clemastine as a potential therapy for hypoxic brain injuries associated with white matter injury and oligodendrocyte precursor cell maturation arrest.


Asunto(s)
Clemastina/uso terapéutico , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/etiología , Antagonistas de los Receptores Histamínicos H1/uso terapéutico , Hipoxia Encefálica/complicaciones , Recuperación de la Función/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cerebelo/ultraestructura , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Hipoxia Encefálica/diagnóstico por imagen , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/ultraestructura , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Nervio Óptico/fisiopatología , Oxígeno/farmacología , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo
3.
J Neurosci ; 36(26): 6937-48, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27358452

RESUMEN

UNLABELLED: Myelin controls the time required for an action potential to travel from the neuronal soma to the axon terminal, defining the temporal manner in which information is processed within the CNS. The presence of myelin, the internodal length, and the thickness of the myelin sheath are powerful structural factors that control the velocity and fidelity of action potential transmission. Emerging evidence indicates that myelination is sensitive to environmental experience and neuronal activity. Activity-dependent modulation of myelination can dynamically alter action potential conduction properties but direct functional in vivo evidence and characterization of the underlying myelin changes is lacking. We demonstrate that in mice long-term monocular deprivation increases oligodendrogenesis in the retinogeniculate pathway but shortens myelin internode lengths without affecting other structural properties of myelinated fibers. We also demonstrate that genetically attenuating synaptic glutamate neurotransmission from retinal ganglion cells phenocopies the changes observed after monocular deprivation, suggesting that glutamate may constitute a signal for myelin length regulation. Importantly, we demonstrate that visual deprivation and shortened internodes are associated with a significant reduction in nerve conduction velocity in the optic nerve. Our results reveal the importance of sensory input in the building of myelinated fibers and suggest that this activity-dependent alteration of myelination is important for modifying the conductive properties of brain circuits in response to environmental experience. SIGNIFICANCE STATEMENT: Oligodendrocyte precursor cells differentiate into mature oligodendrocytes and are capable of ensheathing axons with myelin without molecular cues from neurons. However, this default myelination process can be modulated by changes in neuronal activity. Here, we show, for the first time, that experience-dependent activity modifies the length of myelin internodes along axons altering action potential conduction velocity. Such a mechanism would allow for variations in conduction velocities that provide a degree of plasticity in accordance to environmental needs. It will be important in future work to investigate how these changes in myelination and conduction velocity contribute to signal integration in postsynaptic neurons and circuit function.


Asunto(s)
Fibras Nerviosas Mielínicas/fisiología , Conducción Nerviosa/fisiología , Nervio Óptico/fisiología , Visión Monocular/fisiología , Vías Visuales/fisiología , Potenciales de Acción/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Antígenos/genética , Antígenos/metabolismo , Toxina del Cólera/metabolismo , Cuerpos Geniculados/citología , Cuerpos Geniculados/fisiología , Cuerpos Geniculados/ultraestructura , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Fibras Nerviosas Mielínicas/ultraestructura , Conducción Nerviosa/genética , Nervio Óptico/ultraestructura , Organogénesis/genética , Organogénesis/fisiología , Estimulación Luminosa , Proteoglicanos/genética , Proteoglicanos/metabolismo , Células Ganglionares de la Retina/metabolismo , Transmisión Sináptica/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Vías Visuales/ultraestructura
4.
J Neurosci ; 34(12): 4273-84, 2014 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-24647947

RESUMEN

The medial habenula (MHb) densely expresses nicotinic acetylcholine receptors (nAChRs) and participates in nicotine-related behaviors such as nicotine withdrawal and regulating nicotine intake. Although specific nAChR subunits are identified as being involved in withdrawal behavior, the cellular mechanisms through which nicotine acts to cause this aversive experience is unclear. Here, we demonstrate an interaction between the nicotinic and neurokinin signaling systems that may form the basis for some symptoms experienced during nicotine withdrawal. Using patch-clamp electrophysiology in mouse brain slices, we show that nicotine (1 µm) increases intrinsic excitability in MHb neurons. This nicotine-induced phenomenon requires α5-containing nAChRs and depends on intact neurokinin signaling. The effect is blocked by preincubation with neurokinin 1 (NK1; L-732138, 10 µm) and NK3 (SB222200, 2 µm) antagonists and mimicked by NK1 (substance P, 100 nm) and NK3 (neurokinin B [NKB], 100 nm) agonists. Microinjections (1 µl) of L-732138 (50 nm) and SB222200 (100 nm) into the MHb induces withdrawal behavior in chronic nicotine-treated (8.4 mg/kg/d, 2 weeks) mice. Conversely, withdrawal behavior is absent with analogous microinjections into the lateral habenula of nicotine-treated mice or in mice chronically treated with a vehicle solution. Further, chronic nicotine reduces nicotine's acute modulation of intrinsic excitability while sparing modulation by NKB. Our work elucidates the interplay between two neuromodulatory signaling systems in the brain through which nicotine acts to influence intrinsic excitability. More importantly, we document a neuroadaptation of this mechanism to chronic nicotine exposure and implicate these mechanisms collectively in the emergence of nicotine withdrawal behavior.


Asunto(s)
Habénula/efectos de los fármacos , Neuronas/efectos de los fármacos , Nicotina/farmacología , Receptores de Neuroquinina-1/metabolismo , Receptores de Neuroquinina-3/metabolismo , Transducción de Señal/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Femenino , Habénula/citología , Habénula/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroquinina B/farmacología , Antagonistas del Receptor de Neuroquinina-1/farmacología , Neuronas/citología , Neuronas/metabolismo , Receptores de Neuroquinina-3/antagonistas & inhibidores , Receptores Nicotínicos/metabolismo , Sustancia P/farmacología , Síndrome de Abstinencia a Sustancias/metabolismo
5.
Cell Rep ; 21(10): 2678-2687, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29212016

RESUMEN

A deletion or duplication in the 16p11.2 region is associated with neurodevelopmental disorders, including autism spectrum disorder and schizophrenia. In addition to clinical characteristics, carriers of the 16p11.2 copy-number variant (CNV) manifest opposing neuroanatomical phenotypes-e.g., macrocephaly in deletion carriers (16pdel) and microcephaly in duplication carriers (16pdup). Using fibroblasts obtained from 16pdel and 16pdup carriers, we generated induced pluripotent stem cells (iPSCs) and differentiated them into neurons to identify causal cellular mechanisms underlying neurobiological phenotypes. Our study revealed increased soma size and dendrite length in 16pdel neurons and reduced neuronal size and dendrite length in 16pdup neurons. The functional properties of iPSC-derived neurons corroborated aspects of these contrasting morphological differences that may underlie brain size. Interestingly, both 16pdel and 16pdup neurons displayed reduced synaptic density, suggesting that distinct mechanisms may underlie brain size and neuronal connectivity at this locus.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Deleción Cromosómica , Duplicación Cromosómica/genética , Cromosomas Humanos Par 16/genética , Variaciones en el Número de Copia de ADN/genética , Humanos , Megalencefalia/genética , Megalencefalia/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Modelos Genéticos
6.
Nat Commun ; 5: 4991, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25255972

RESUMEN

The Schwann cell (SC)-axon interface represents a membrane specialization that integrates axonal signals to coordinate cytoskeletal dynamics resulting in myelination. Here we show that LKB1/Par-4 is asymmetrically localized to the SC-axon interface and co-localizes with the polarity protein Par-3. Using purified SCs and myelinating cocultures, we demonstrate that localization is dependent on the phosphorylation of LKB1 at serine-431. SC-specific deletion of LKB1 significantly attenuates developmental myelination, delaying the initiation and altering the myelin extent into adulthood, resulting in a 30% reduction in the conduction velocity along the adult sciatic nerves. Phosphorylation of LKB1 by protein kinase A is essential to establish the asymmetric localization of LKB1 and Par-3 and rescues the delay in myelination observed in the SC-specific knockout of LKB1. Our findings suggest that SC polarity may coordinate multiple signalling complexes that couple SC-axon contact to the redistribution of specific membrane components necessary to initiate and control myelin extent.


Asunto(s)
Polaridad Celular , Vaina de Mielina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células de Schwann/citología , Células de Schwann/enzimología , Proteínas Quinasas Activadas por AMP , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Ratones , Ratones Noqueados , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Ratas , Células de Schwann/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA