Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroradiology ; 61(8): 861-867, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31020343

RESUMEN

PURPOSE: p53 and Ki67 status can be relevant to the management of glioblastoma. The goal of this study is to determine whether tumor morphology and bulk depicted on MRI correlate with p53 and Ki67 in glioblastoma. METHODS: A retrospective review of 223 patients with glioblastoma and corresponding p53 or Ki67 status, along with T1-weighted post-contrast MR images was performed. Enhancing tumors were outlined for determining surface regularity, tumor bulk, and necrotic volume. The median value of 0.1 was chosen for p53 and 0.2 for Ki67 to separate each data set into two classes. T tests and receiver operating characteristic analysis were performed to determine the separation of the classes and the predicting power of each feature. RESULTS: There were significant differences between tumor surface regularity (p = 0.01) and necrotic volume (p = 0.0429) according to Ki67 levels, although neither had statistically significant predictive power (AUC = 0.697, p = 0.0506 and AUC = 0.577, p = 0.164, respectively). There were also significant differences between tumor bulk (p = 0.0239) and necrotic volume (p = 0.0200) according to p53 levels, but again no significant predictive power was found using ROC analysis (AUC = 0.5882, p = 0.0894 and AUC = 0.567, p = 0.155, respectively). CONCLUSION: Quantitative morphological tumor characteristics on post-contrast T1-weighted MRI can to a certain degree provide insights regarding Ki67 and p53 status in patients with glioblastoma.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Glioblastoma/diagnóstico por imagen , Antígeno Ki-67/metabolismo , Imagen por Resonancia Magnética , Proteína p53 Supresora de Tumor/metabolismo , Adulto , Anciano , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Femenino , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Estudios Retrospectivos , Carga Tumoral
2.
J Clin Invest ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207859

RESUMEN

Glioblastoma (GBM) is a highly aggressive and malignant brain tumor with limited therapeutic options and a poor prognosis. Despite current treatments, the invasive nature of GBM often leads to recurrence. A promising alternative strategy is to harness the potential of the immune system against tumor cells. Our previous data showed that the Bvax (B-cell-based vaccine) can induce therapeutic responses in preclinical models of GBM. In this study, we aim to characterize the antigenic reactivity of BVax-derived antibodies and evaluate their therapeutic potential. We performed immunoproteomics and functional assays in murine models and human GBM patient samples. Our investigations revealed that BVax distributes throughout the GBM tumor microenvironment (TME) and then differentiates into antibody-producing plasmablasts. Proteomic analyses indicate that the antibodies produced by BVax display unique reactivity, predominantly targeting factors associated with cell motility and the extracellular matrix. Crucially, these antibodies inhibit critical processes such as GBM cell migration and invasion. These findings provide valuable insights into the therapeutic potential of BVax-derived antibodies for GBM patients, pointing towards a novel direction in GBM immunotherapy.

3.
Res Sq ; 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36711497

RESUMEN

Immunotherapy has revolutionized cancer treatment but has yet to be translated into brain tumors. Studies in other solid tumors suggest a central role of B-cell immunity in driving immune-checkpoint-blockade efficacy. Using single-cell and single-nuclei transcriptomics of human glioblastoma and melanoma brain metastasis, we found that tumor-associated B-cells have high expression of checkpoint molecules, known to block B-cell-receptor downstream effector function such as plasmablast differentiation and antigen-presentation. We also identified TGFß-1/TGFß receptor-2 interaction as a crucial modulator of B-cell suppression. Treatment of glioblastoma patients with pembrolizumab induced expression of B-cell checkpoint molecules and TGFß-receptor-2. Abrogation of TGFß using different conditional knockouts expanded germinal-center-like intratumoral B-cells, enhancing immune-checkpoint-blockade efficacy. Finally, blocking αVß8 integrin (which controls the release of active TGFß) and PD-1 significantly increased B-cell-dependent animal survival and immunological memory. Our study highlights the importance of intratumoral B-cell immunity and a remodeled approach to boost the effects of immunotherapy against brain tumors.

4.
Cancers (Basel) ; 13(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34572775

RESUMEN

Glioblastoma (GBM) is a lethal primary brain tumor. Despite extensive effort in basic, translational, and clinical research, the treatment outcomes for patients with GBM are virtually unchanged over the past 15 years. GBM is one of the most immunologically "cold" tumors, in which cytotoxic T-cell infiltration is minimal, and myeloid infiltration predominates. This is due to the profound immunosuppressive nature of GBM, a tumor microenvironment that is metabolically challenging for immune cells, and the low mutational burden of GBMs. Together, these GBM characteristics contribute to the poor results obtained from immunotherapy. However, as indicated by an ongoing and expanding number of clinical trials, and despite the mostly disappointing results to date, immunotherapy remains a conceptually attractive approach for treating GBM. Checkpoint inhibitors, various vaccination strategies, and CAR T-cell therapy serve as some of the most investigated immunotherapeutic strategies. This review article aims to provide a general overview of the current state of glioblastoma immunotherapy. Information was compiled through a literature search conducted on PubMed and clinical trials between 1961 to 2021.

5.
Cells ; 10(9)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34571905

RESUMEN

GBM is the most common primary brain tumor in adults, and the aggressive nature of this tumor contributes to its extremely poor prognosis. Over the years, the heterogeneous and adaptive nature of GBM has been highlighted as a major contributor to the poor efficacy of many treatments including various immunotherapies. The major challenge lies in understanding and manipulating the complex interplay among the different components within the tumor microenvironment (TME). This interplay varies not only by the type of cells interacting but also by their spatial distribution with the TME. This review highlights the various immune and non-immune components of the tumor microenvironment and their consequences f the efficacy of immunotherapies. Understanding the independent and interdependent aspects of the various sub-populations encapsulated by the immune and non-immune components will allow for more targeted therapies. Meanwhile, understanding how the TME creates and responds to different environmental pressures such as hypoxia may allow for other multimodal approaches in the treatment of GBM. Ultimately, a better understanding of the GBM TME will aid in the development and advancement of more effective treatments and in improving patient outcomes.


Asunto(s)
Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Glioblastoma/inmunología , Glioblastoma/patología , Microambiente Tumoral/inmunología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA