Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
J Am Chem Soc ; 146(22): 15143-15154, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38781282

RESUMEN

Nickel and palladium complexes bearing "sandwich" diimine ligands with perfluorinated aryl caps have been synthesized, characterized, and explored in ethylene polymerization reactions. The X-ray crystallographic analysis of the precatalysts 16 and 6b shows differences from their nonfluorinated analogues 17 and 19, with the perfluorinated aryl caps centered precisely over the nickel and palladium centers, which results in higher buried volumes of the metal centers relative to the nonfluorinated analogues. The sandwich diimine-palladium complexes 5a and 5b containing perfluorinated aryl caps polymerize ethylene in a controlled fashion with activities that are substantially increased compared with their nonfluorinated analogues. Migratory insertion rates in relevant methyl ethylene complexes agree with the activities exhibited in bulk polymerization experiments. DFT studies suggest that facility of ethylene rotation from its preferred orientation perpendicular to the Pd-alkyl bond into a parallel in-plane conformation contributes to the higher polymerization activity for 5b relative to 18a. For these palladium systems, polymer molecular weights can be controlled via hydrogen addition (hydrogenolysis), which is unusual for late-transition-metal-catalyzed olefin polymerizations with no catalyst deactivation occurring. Sandwich diimine-nickel complexes 6a and 6b with perfluorinated aryl caps show ethylene polymerization activities that are about half of those of classical tetraisopropyl-substituted catalyst 2 but again are more active than the analogous nonfluorinated sandwich complexes. Ethylene polymerizations exhibit living behavior, and branched ultrahigh-molecular-weight polyethylenes (UHMWPEs) with very low-molecular-weight distributions (less than 1.1) are obtained. The activated nickel catalysts are stable in the absence of monomer and show good long-term stability at 25 °C.

2.
Chemistry ; 30(17): e202303190, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38011542

RESUMEN

Polyfluorinated substituents often enhance effectiveness, improve the stability within metabolic processes, and boost the lipophilicity of biologically active compounds. However, methods for their introduction into aliphatic carbon chains remain very limited. A potentially general route to integrate the fluorinated scaffolds into organic molecules involves insertion of fluorine-containing carbenes into C(sp3)-H bonds. The electron-withdrawing characteristics of perfluoroalkyl groups enhances the reactivity of these carbenes which should enable the functionalization of unactivated C(sp3)-H bonds. Curiously, it appears that use of perfluoroalkyl-containing carbenes in alkane C-H functionalization is exceedingly rare. This concept describes photolysis, enzymatic catalysis, and transition metal catalysis as three primary approaches to C(sp3)-H functionalization by trifluoromethylcarbene and its homologues.

3.
Chemistry ; 29(48): e202301672, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37267071

RESUMEN

We report here "sandwich"-diimine copper complex-catalyzed trifluoroethylation and pentafluoropropylation of unactivated C(sp3 )-H bonds in alkyl esters, halides, and protected amines by employing CF3 CHN2 and CF3 CF2 CHN2 reagents. Reactions proceed in dichloromethane solvent at room temperature. Identical C-H functionalization conditions and stoichiometries are employed for generality and convenience. Selectivities for C-H insertions are higher for compounds possessing stronger electron-withdrawing substituents. Preliminary mechanistic studies point to a mechanism involving a pre-equilibrium forming a "sandwich"-diimine copper-CF3 CHN2 complex followed by rate-determining loss of nitrogen affording the reactive copper carbene. It reacts with trifluoromethyldiazomethane about 6.5 times faster than with 1-fluoroadamantane explaining the need for slow addition of the diazo compound.

4.
Angew Chem Int Ed Engl ; 61(31): e202200334, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35594167

RESUMEN

We report here "sandwich" diimine-copper(I) catalysts for C(sp3 )-H bond functionalization. Reactions of alkanes and ethers with trimethylsilyldiazomethane, ethyl diazoacetate, and trifluoromethyl-diazomethane have been demonstrated. We also report C(sp3 )-H bond methylation, benzylation, and diphenylmethylation by diazomethane, aryldiazomethanes, and diphenyldiazomethane. These reactions are rare examples of base-metal catalyzed, intermolecular C(sp3 )-H functionalizations by employing unactivated diazo compounds. Electrophilicity and unique steric environment of "sandwich"-copper catalysts are likely reasons for their catalytic efficiency.

5.
Angew Chem Int Ed Engl ; 60(9): 4566-4569, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230900

RESUMEN

The reactivity of NiII and PdII olefin polymerization catalysts can be enhanced by introduction of electron-withdrawing substituents on the supporting ligands rendering the metal centers more electrophilic. Reported here is a comparison of ethylene polymerization activity of a classical salicyliminato nickel catalyst substituted with the powerful electron-withdrawing 2,4,6-triphenylpyridinium (trippy) group to the -CF3 analogue. The trippy substituent is substantially more electron-withdrawing (σmeta =0.63) than the trifluoromethyl group (σmeta =0.43) which results in a ca. 8-fold increase in catalytic turnover frequency. An additional advantage of trippy is the high steric bulk relative to the trifluoromethyl group. This feature results in a four-fold increase in polymer molecular weight owing to enhanced retardation of chain transfer. A significant increase in catalyst lifetime is observed as well.

6.
J Am Chem Soc ; 142(36): 15431-15437, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32852948

RESUMEN

Palladium diimine-catalyzed polymerization of olefins using unsaturated alcohols as chain-transfer agents has been demonstrated. The reaction affords aldehyde end-capped polymers whose molecular weight can be tuned by varying the ratio of olefin/chain-transfer agent. Notably, >95% efficient end capping with aldehyde can be achieved under optimized conditions. This end-capping procedure is a rare example of introducing a highly reactive and versatile terminal functionality in polyolefin chains using a functional group-tolerant late metal catalyst. The reactivity of these end-capped polymers is illustrated here via functionalization with dyes to yield colored, hydrocarbon-soluble polyolefin derivatives.

7.
J Am Chem Soc ; 142(15): 7198-7206, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32233435

RESUMEN

New neutral nickel and palladium ethylene polymerization catalysts have been prepared that incorporate an anionic (N,O) chelating ligand. Extensive axial shielding is provided by two 3,5-dichloroaryl moieties in a "sandwich" orientation. Such shielding results in an exceptionally slow rate of chain transfer relative to migratory insertion in the nickel catalyst, and thus highly controlled polymerization of ethylene is observed, leading to lightly branched ultra-high molecular weight polyethylene with Mn values up to 4.1 × 106 g/mol. The analogous palladium catalysts provide the means for a detailed mechanistic study of chain propagation in an electronically asymmetric neutral palladium catalyst. Both isomers of the methyl ethylene complex can be generated and observed at low temperatures allowing experimental elucidation of mechanistic details of chain propagation probed in other electronically asymmetric systems only through DFT studies or by examination of model studies. The barrier to migratory insertion in these complexes is ca. 19.2 kcal/mol. Investigation of the equilibration of the methyl ethylene isomers in the presence of excess ethylene showed the isomerization rate is dependent on ethylene concentration. This is the first direct proof that isomerization in these alkyl ethylene intermediates is catalyzed by ethylene. Furthermore, isomer equilibration is much faster than migratory insertion so that the barriers for insertion of individual isomers cannot be determined.

8.
J Org Chem ; 85(20): 13069-13079, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33000944

RESUMEN

N-Aminopyridinium ylide-directing group is employed for copper-promoted chalcogenation of sp2 C-H bonds with aryl and alkyl disulfides as well as diphenyl diselenide. Reactions proceed in hexafluoroisopropanol (HFIP) solvent at elevated temperatures and are promoted by copper(II) acetate.

9.
J Am Chem Soc ; 141(37): 14728-14735, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31529954

RESUMEN

1-Aminopyridinium ylides are efficient directing groups for palladium-catalyzed ß-arylation and alkylation of sp3 C-H bonds in carboxylic acid derivatives. The efficiency of these directing groups depends on the substitution at the pyridine moiety. The unsubstituted pyridine-derived ylides allow functionalization of primary C-H bonds, while methylene groups are unreactive in the absence of external ligands. 4-Pyrrolidinopyridine-containing ylides are capable of C-H functionalization in acyclic methylene groups in the absence of external ligands, thus rivaling the efficiency of the aminoquinoline directing group. Preliminary mechanistic studies have been performed. A cyclopalladated intermediate has been isolated and characterized by X-ray crystallography, and its reactivity was studied.


Asunto(s)
Aminopiridinas/química , Carbono/química , Hidrógeno/química , Alquilación , Cristalografía por Rayos X , Ligandos
10.
J Org Chem ; 84(20): 13022-13032, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31502845

RESUMEN

N-Aminopyridinium ylides are used as monodentate directing groups for copper-promoted C-H/N-H coupling of sp2 C-H bonds with pyrazoles, imidazoles, and sulfonamides. Reactions proceed in fluorinated alcohol solvents at elevated temperatures and require use of 1.3-3 equiv of copper(II) acetate. This appears to be the first method for copper-promoted C-H/N-H coupling directed by a removable monodentate auxiliary in absence of added ligands.

11.
J Am Chem Soc ; 140(42): 13703-13710, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30351137

RESUMEN

A general method for a new, hindered lithium diadamantylamide (LDAM) base-promoted insertion of arynes into Si-P, Si-S, Si-N, and C-C bonds is described. Arynes are generated from easily available aryl triflates and halides. Subsequent reaction of the aryne with silylated phosphines, sulfides, or amines affords the insertion products. Furthermore, a one-step synthesis of anthracenes from aryl halides and aryl ketones is also demonstrated. Cyano, aryl, alkyl, trifluoromethyl, vinyl, methoxy, chloro, fluoro, and even formyl moieties are compatible with the reaction conditions. The new lithium amide affords higher yields compared with lithium tetramethylpiperidide (LiTMP)-promoted reactions. Furthermore, the bulkiness of LDAM base essentially suppresses aryne reaction with base, allowing use of aryl halides and triflates as the limiting reagents.

12.
J Am Chem Soc ; 140(18): 6014-6026, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29656637

RESUMEN

Porous molecular crystals are an emerging class of porous materials that is unique in being built from discrete molecules rather than being polymeric in nature. In this study, we examined the effects of molecular structure of the precursors on the formation of porous solid-state structures with a series of 16 rigid aromatics. The majority of these precursors possess pyrazole groups capable of hydrogen bonding, as well as electron-rich aromatics and electron-poor tetrafluorobenzene rings. These precursors were prepared using a combination of Pd- and Cu-catalyzed cross-couplings, careful manipulations of protecting groups on the nitrogen atoms, and solvothermal syntheses. Our study varied the geometry and dimensions of precursors, as well as the presence of groups capable of hydrogen bonding and [π···π] stacking. Thirteen derivatives were crystallographically characterized, and four of them were found to be porous with surface areas between 283 and 1821 m2 g-1. Common to these four porous structures were (a) rigid trigonal geometry, (b) [π···π] stacking of electron-poor tetrafluorobenzenes with electron-rich pyrazoles or tetrazoles, and

13.
J Org Chem ; 83(10): 5844-5850, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29737848

RESUMEN

3,5-Dimethylpyrazole was employed as a monodentate directing group for palladium-catalyzed ortho-sp2 C-H arylation with aryl iodides. The reaction shows good functional group tolerance and outstanding selectivity for mono- ortho-arylation. Ozonolysis of ortho-arylated arylpyrazoles gave acylated biphenylamines that were further arylated to afford unsymmetrically substituted 2,6-diarylacetanilides.


Asunto(s)
Compuestos de Anilina/síntesis química , Compuestos Organometálicos/química , Paladio/química , Compuestos de Anilina/química , Catálisis , Estructura Molecular , Ozono/química
14.
Angew Chem Int Ed Engl ; 57(6): 1688-1691, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29319216

RESUMEN

A method for cobalt-catalyzed, carboxylate-directed functionalization of arene C-H bonds is reported. Alkynes, styrenes, and 1,3-dienes can be coupled with benzoic acids to provide cyclic products in good yields. The reactions proceed in the presence of a cobalt(II) hexafluoroacetylacetonate catalyst, (TMS)2 NH base, Ce(SO4 )2 cooxidant, and oxygen oxidant.


Asunto(s)
Alquinos/química , Ácido Benzoico/química , Cobalto/química , Polienos/química , Estirenos/química , Alquilación , Carbono/química , Catálisis , Hidrógeno/química , Oxidantes/química
15.
J Am Chem Soc ; 139(44): 16013-16022, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29083899

RESUMEN

Copolymerizations of ethylene with vinyltrialkoxysilanes using cationic (α-diimine)Ni(Me)(CH3CN)+ complexes 4a,b/B(C6F5)3 yield high molecular weight copolymers exhibiting highly branched to nearly linear backbones depending on reaction conditions and catalyst choice. Polymerizations are first-order in ethylene pressure and inverse-order in silane concentration. Microstructural analysis of the copolymers reveals both in-chain and chain-end incorporation of -Si(OR)3 groups whose ratios depend on temperature and ethylene pressure. Detailed low-temperature NMR spectroscopic investigations show that well-defined complex 3b (α-diimine)Ni(Me)(OEt2)+ reacts rapidly at -60 °C with vinyltrialkoxysilanes via both 2,1 and 1,2 insertion pathways to yield 4- and 5-membered chelates, respectively. Such chelates are the major catalyst resting states but are in rapid equilibrium with ethylene-opened chelates, (α-diimine)Ni(R)(C2H4)+ complexes, the species responsible for chain growth. Chelate rearrangement via ß-silyl elimination accounts for formation of chain-end -Si(OR)3 groups and constitutes a chain-transfer mechanism. Chelate formation and coordination of the Ni center to the ether moiety, R-O-Si, of the vinylsilane somewhat decreases the turnover frequency (TOF) relative to ethylene homopolymerization, but still remarkably high TOFs of up to 4.5 × 105 h-1 and overall productivities can be achieved. Activation of readily available (α-diimine)NiBr2 complexes 2 with a combination of AlMe3/B(C6F5)3/[Ph3C][B(C6F5)4] yields a highly active and productive catalyst system for the convenient synthesis of the copolymer, a cross-linkable PE. For example, copolymers containing 0.23 mol % silane can be generated at 60 °C, 600 psig ethylene over 4 h with a productivity of 560 kg copolymer/g Ni. This method offers an alternative route to these materials, normally prepared via radical routes, which are precursors to the commercial cross-linked polyethylene, PEX-b.

16.
Angew Chem Int Ed Engl ; 56(13): 3630-3634, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28233918

RESUMEN

We have developed a method for palladium-catalyzed, pyrazole-directed sp3 C-H bond arylation by aryl iodides. The reaction employs a Pd(OAc)2 catalyst at 5-10 mol % loading and silver(I) oxide as a halide-removal agent, and it proceeds in acetic acid or acetic acid/hexafluoroisopropanol solvent. Ozonolysis of the pyrazole moiety affords pharmaceutically important ß-phenethylamines.


Asunto(s)
Paladio/química , Fenetilaminas/síntesis química , Pirazoles/química , Catálisis , Yoduros/síntesis química , Yoduros/química , Óxidos/química , Fenetilaminas/química , Pirazoles/síntesis química , Compuestos de Plata/química
17.
J Am Chem Soc ; 138(13): 4601-7, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26990413

RESUMEN

An operationally simple and general method for copper-catalyzed, aminoquinoline-assisted amination of ß-C(sp(2))-H bonds of benzoic acid derivatives is reported. The reaction employs Cu(OAc)2 or (CuOH)2CO3 catalysts, an amine coupling partner, and oxygen from air as a terminal oxidant. Exceptionally high generality with respect to amine coupling partners is observed. Specifically, primary and secondary aliphatic and aromatic amines, heterocycles, such as indoles, pyrazole, and carbazole, sulfonamides, as well as electron-deficient aromatic and heteroaromatic amines are competent coupling components.


Asunto(s)
Aminoquinolinas/química , Benzoatos/química , Cobre/química , Aminación , Catálisis , Técnicas Químicas Combinatorias , Estructura Molecular
18.
J Am Chem Soc ; 138(49): 16120-16129, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960299

RESUMEN

Copolymerizations of ethylene with vinyltrialkoxysilanes are reported using both a "traditional" cationic Pd(II) aryldiimine catalyst, t-1 (aryl = 2,6-diisopropylphenyl), and a "sandwich-type" aryldiimine catalyst, s-2 (aryl = 8-tolylnaphthyl). Incorporation levels of vinyltrialkoxysilanes between 0.25 and 2.0 mol % were achieved with remarkably little rate retardation relative to ethylene homopolymerizations. In the case of the traditional catalyst system, molecular weights decrease as the level of comonomer increases and only one trialkoxysilyl group is incorporated per chain. Molecular weight distributions of ca. 2 are observed. For the sandwich catalyst, higher molecular weights are observed with many more trialkoxysilyl groups incorporated per chain. Polymers with molecular weight distributions of ca. 1.2-1.4 are obtained. Detailed NMR mechanistic studies have revealed the formation of intermediate π-complexes of the type (diimine)Pd(alkyl)(vinyltrialkoxysilane)+. 1,2-Migratory insertions of these complexes occur with rates similar to ethylene insertion and result in formation of observable five-membered chelate intermediates. These chelates are rapidly opened with ethylene forming alkyl ethylene complexes, a requirement for chain growth. An unusual ß-silyl elimination mechanism was shown to be responsible for chain transfer and formation of low molecular weight copolymers in the traditional catalyst system, t-1. This chain transfer process is retarded in the sandwich system. Relative binding affinities of ethylene and vinyltrialkoxysilanes to the cationic palladium center have been determined. The quantitative mechanistic studies reported fully explain the features of the bulk polymerization results.

19.
Acc Chem Res ; 48(4): 1053-64, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25756616

RESUMEN

In recent years, carbon-hydrogen bond functionalization has evolved from an organometallic curiosity to a tool used in mainstream applications in the synthesis of complex natural products and drugs. The use of C-H bonds as a transformable functional group is advantageous because these bonds are the most abundant functionality in organic molecules. One-step conversion of these bonds to the desired functionality shortens synthetic pathways, saving reagents, solvents, and labor. Less chemical waste is generated as well, showing that this chemistry is environmentally beneficial. This Account describes the development and use of bidentate, monoanionic auxiliaries for transition-metal-catalyzed C-H bond functionalization reactions. The chemistry was initially developed to overcome the limitations with palladium-catalyzed C-H bond functionalization assisted by monodentate directing groups. By the use of electron-rich bidentate directing groups, functionalization of unactivated sp(3) C-H bonds under palladium catalysis has been developed. Furthermore, a number of abundant base-metal complexes catalyze functionalization of sp(2) C-H bonds. At this point, aminoquinoline, picolinic acid, and related compounds are among the most used and versatile directing moieties in C-H bond functionalization chemistry. These groups facilitate catalytic functionalization of sp(2) and sp(3) C-H bonds by iron, cobalt, nickel, copper, ruthenium, rhodium, and palladium complexes. Exceptionally general reactivity is observed, enabling, among other transformations, direct arylation, alkylation, fluorination, sulfenylation, amination, etherification, carbonylation, and alkenylation of carbon-hydrogen bonds. The versatility of these auxilaries can be attributed to the following factors. First, they are capable of stabilizing high oxidation states of transition metals, thereby facilitating the C-H bond functionalization step. Second, the directing groups can be removed, enabling their use in synthesis and functionalization of natural products and medicinally relevant substances. While the development of these directing groups presents a significant advance, several limitations of this methodology are apparent. The use of expensive second-row transition metal catalysts is still required for efficient sp(3) C-H bond functionalization. Furthermore, the need to install and subsequently remove the relatively expensive directing group is a disadvantage.


Asunto(s)
Aminoquinolinas/química , Productos Biológicos/síntesis química , Carbono/química , Hidrógeno/química , Ácidos Picolínicos/química , Productos Biológicos/química , Estructura Molecular , Compuestos Organometálicos/química , Elementos de Transición/química
20.
Chemistry ; 21(7): 2750-4, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25491319

RESUMEN

We report structural characterization of a new member of m-phenylene ethynylene ring family. This shape-persistent macrocycle also co-crystallizes with hexafluoro-, 1,2,4,5-tetrafluoro-, 1,3,5-trifluoro, and 1,4-difluorobenzene. The four complexes are almost isostructural, and all show the fluoroarene included into the central cavity of the macrocycle. Characterized by multiple short C - H⋅⋅⋅F - C contacts, these inclusion complexes further dimerize in the solid state into a 2+2 assembly, in which the two macrocycles embrace each other by their large hydrophobic groups that are rotated by 60° relative to one another.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA