Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Development ; 144(1): 106-114, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27888193

RESUMEN

Cellular senescence, a form of stable cell cycle arrest that is traditionally associated with tumour suppression, has been recently found to occur during mammalian development. Here, we show that cell senescence is an intrinsic part of the developmental programme in amphibians. Programmed senescence occurs in specific structures during defined time windows during amphibian development. It contributes to the physiological degeneration of the amphibian pronephros and to the development of the cement gland and oral cavity. In both contexts, senescence depends on TGFß but is independent of ERK/MAPK activation. Furthermore, elimination of senescent cells through temporary TGFß inhibition leads to developmental defects. Our findings uncover conserved and new roles of senescence in vertebrate organogenesis and support the view that cellular senescence may have arisen in evolution as a developmental mechanism.


Asunto(s)
Senescencia Celular/fisiología , Desarrollo Embrionario/fisiología , Vertebrados/embriología , Ambystoma mexicanum/embriología , Anfibios/embriología , Animales , Proteínas Reguladoras de la Apoptosis/fisiología , Senescencia Celular/genética , Embrión no Mamífero , Desarrollo Embrionario/genética , Riñón/embriología , Organogénesis/fisiología , Factor de Crecimiento Transformador beta/fisiología , Xenopus laevis/embriología
2.
Arterioscler Thromb Vasc Biol ; 39(9): 1859-1873, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31315432

RESUMEN

OBJECTIVE: Marfan syndrome (MFS) is caused by mutations in FBN1 (fibrillin-1), an extracellular matrix (ECM) component, which is modified post-translationally by glycosylation. This study aimed to characterize the glycoproteome of the aortic ECM from patients with MFS and relate it to aortopathy. Approach and Results: ECM extracts of aneurysmal ascending aortic tissue from patients with and without MFS were enriched for glycopeptides. Direct N-glycopeptide analysis by mass spectrometry identified 141 glycoforms from 47 glycosites within 35 glycoproteins in the human aortic ECM. Notably, MFAP4 (microfibril-associated glycoprotein 4) showed increased and more diverse N-glycosylation in patients with MFS compared with control patients. MFAP4 mRNA levels were markedly higher in MFS aortic tissue. MFAP4 protein levels were also increased at the predilection (convexity) site for ascending aorta aneurysm in bicuspid aortic valve patients, preceding aortic dilatation. In human aortic smooth muscle cells, MFAP4 mRNA expression was induced by TGF (transforming growth factor)-ß1 whereas siRNA knockdown of MFAP4 decreased FBN1 but increased elastin expression. These ECM changes were accompanied by differential gene expression and protein abundance of proteases from ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family and their proteoglycan substrates, respectively. Finally, high plasma MFAP4 concentrations in patients with MFS were associated with a lower thoracic descending aorta distensibility and greater incidence of type B aortic dissection during 68 months follow-up. CONCLUSIONS: Our glycoproteomics analysis revealed that MFAP4 glycosylation is enhanced, as well as its expression during the advanced, aneurysmal stages of MFS compared with control aneurysms from patients without MFS.


Asunto(s)
Aorta/química , Matriz Extracelular/química , Glicopéptidos/análisis , Síndrome de Marfan/metabolismo , Proteómica/métodos , Aneurisma de la Aorta Torácica/metabolismo , Proteínas Portadoras/sangre , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Proteínas de la Matriz Extracelular/sangre , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/fisiología , Fibrilina-1/genética , Glicoproteínas/sangre , Glicoproteínas/genética , Glicoproteínas/fisiología , Glicosilación , Humanos , Miocitos del Músculo Liso/metabolismo , Remodelación Vascular
3.
Development ; 142(19): 3351-61, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26443635

RESUMEN

Small leucine-rich repeat proteoglycan (SLRP) family proteins play important roles in a number of biological events. Here, we demonstrate that the SLRP family member Asporin (ASPN) plays a crucial role in the early stages of eye development in Xenopus embryos. During embryogenesis, ASPN is broadly expressed in the neuroectoderm of the embryo. Overexpression of ASPN causes the induction of ectopic eyes. By contrast, blocking ASPN function with a morpholino oligonucleotide (ASPN-MO) inhibits eye formation, indicating that ASPN is an essential factor for eye development. Detailed molecular analyses revealed that ASPN interacts with insulin growth factor receptor (IGFR) and is essential for activating the IGF receptor-mediated intracellular signalling pathway. Moreover, ASPN perturbed the Wnt, BMP and Activin signalling pathways, suggesting that ASPN thereby creates a favourable environment in which the IGF signal can dominate. ASPN is thus a novel secreted molecule essential for eye induction through the coordination of multiple signalling pathways.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Ojo/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Transducción de Señal/fisiología , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Animales , Western Blotting , Inmunohistoquímica , Inmunoprecipitación , Hibridación in Situ , Morfolinos/genética , Placa Neural/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Biochem Soc Trans ; 42(4): 1056-62, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25110002

RESUMEN

In all living organisms, CoA (coenzyme A) is synthesized in a highly conserved process that requires pantothenic acid (vitamin B5), cysteine and ATP. CoA is uniquely designed to function as an acyl group carrier and a carbonyl-activating group in diverse biochemical reactions. The role of CoA and its thioester derivatives, including acetyl-CoA, malonyl-CoA and HMG-CoA (3-hydroxy-3-methylglutaryl-CoA), in the regulation of cellular metabolism has been extensively studied and documented. The main purpose of the present review is to summarize current knowledge on extracellular and intracellular signalling functions of CoA/CoA thioesters and to speculate on future developments in this area of research.


Asunto(s)
Coenzima A/metabolismo , Acetilcoenzima A/metabolismo , Acilcoenzima A/metabolismo , Animales , Malonil Coenzima A/metabolismo , Mamíferos/metabolismo , Transducción de Señal/fisiología
5.
Stem Cell Reports ; 18(2): 555-569, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36669494

RESUMEN

Marfan syndrome (MFS) is a rare connective tissue disorder caused by mutations in FBN1. Patients with MFS notably suffer from aortic aneurysm and dissection. Despite considerable effort, animal models have proven to be poorly predictive for therapeutic intervention in human aortic disease. Patient-derived induced pluripotent stem cells can be differentiated into vascular smooth muscle cells (VSMCs) and recapitulate major features of MFS. We have screened 1,022 small molecules in our in vitro model, exploiting the highly proteolytic nature of MFS VSMCs, and identified 36 effective compounds. Further analysis identified GSK3ß as a recurring target in the compound screen. GSK3ß inhibition/knockdown did not ameliorate the proliferation defect in MFS-VSMCs but improved MFS-VSMC proteolysis and apoptosis and partially rescued fibrillin-1 deposition. To conclude, we have identified GSK3ß as a novel target for MFS, forming the foundation for future work in MFS and other aortic diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de Marfan , Animales , Humanos , Síndrome de Marfan/genética , Músculo Liso Vascular , Aorta , Glucógeno Sintasa Quinasa 3 beta
6.
Biomater Adv ; 145: 213245, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36549149

RESUMEN

There is a significant need across multiple indications for an off-the-shelf bioengineered tubular graft which fulfils the mechanical and biological requirements for implantation and function but does not necessarily require cells for manufacture or deployment. Herein, we present a tissue-like tubular construct using a cell-free, materials-based method of manufacture, utilizing densified collagen hydrogel. Our tubular grafts are seamless, mechanically strong, customizable in terms of lumen diameter and wall thickness, and display a uniform fibril density across the wall thickness and along the tube length. While the method enables acellular grafts to be generated rapidly, inexpensively, and to a wide range of specifications, the cell-compatible densification process also enables a high density of cells to be incorporated uniformly into the walls of the tubes, which we show can be maintained under perfusion culture. Additionally, the method enables tubes consisting of distinct cell domains with cellular configurations at the boundaries which may be useful for modelling aortic disease. Further, we demonstrate additional steps which allow for luminal surface patterning. These results highlight the universality of this approach and its potential for developing the next generation of bioengineered grafts.


Asunto(s)
Colágeno , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Ingeniería Biomédica , Hidrogeles
7.
Front Cell Dev Biol ; 11: 1147625, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936982

RESUMEN

Introduction: Proline/arginine-rich end leucine-rich repeat protein (PRELP), is a small secreted proteoglycan expressed by pericytes and vascular smooth muscle cells surrounding the brain vasculature of adult mouse. Methods: We utilised a Prelp knockout (Prelp -/-) mouse model to interrogate vasculature integrity in the brain alongside performing in vitro assays to characterise PRELP application to endothelial cells lines. Our findings were supplemented with RNA expression profiling to elucidate the mechanism of how PRELP maintains neurovasculature function. Results: Prelp -/- mice presented with neuroinflammation and reducedneurovasculature integrity, resulting in IgG and dextran leakage in the cerebellum and cortex. Histological analysis of Prelp -/- mice revealed reducedcell-cell integrity of the blood brain barrier, capillary attachment of pericytes andastrocyte end-feet. RNA-sequencing analysis found that cell-cell adhesion andinflammation are affected in Prelp -/- mice and gene ontology analysis as well as gene set enrichment analysis demonstrated that inflammation related processes and adhesion related processes such as epithelial-mesenchymal transition and apical junctions were significantly affected, suggesting PRELP is a regulator of cell-cell adhesion. Immunofluorescence analysis showed that adhesion junction protein expression levels of cadherin, claudin-5, and ZO-1, was suppressed in Prelp -/- mice neurovasculature. Additionally, in vitro studies revealed that PRELP application to endothelial cells enhances cell-cell integrity, induces mesenchymal-endothelial transition and inhibits TGF-ß mediated damage to cell-cell adhesion. Discussion: Our study indicates that PRELP is a novel endogenous secreted regulator of neurovasculature integrity and that PRELP application may be a potential treatment for diseases associated with neurovascular damage.

9.
Cancers (Basel) ; 14(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36230849

RESUMEN

Retinoblastoma (RB) is the most common intraocular pediatric cancer. Nearly all cases of RB are associated with mutations compromising the function of the RB1 tumor suppressor gene. We previously demonstrated that PRELP is widely downregulated in various cancers and our in vivo and in vitro analysis revealed PRELP as a novel tumor suppressor and regulator of EMT. In addition, PRELP is located at chromosome 1q31.1, around a region hypothesized to be associated with the initiation of malignancy in RB. Therefore, in this study, we investigated the role of PRELP in RB through in vitro analysis and next-generation sequencing. Immunostaining revealed that PRELP is expressed in Müller glial cells in the retina. mRNA expression profiling of PRELP-/- mouse retina and PRELP-treated RB cells found that PRELP contributes to RB progression via regulation of the cancer microenvironment, in which loss of PRELP reduces cell-cell adhesion and facilitates EMT. Our observations suggest that PRELP may have potential as a new strategy for RB treatment.

10.
Nat Cardiovasc Res ; 1(12): 1215-1229, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36938497

RESUMEN

Re-activating quiescent adult epicardium represents a potential therapeutic approach for human cardiac regeneration. However, the exact molecular differences between inactive adult and active fetal epicardium are not known. In this study, we combined fetal and adult human hearts using single-cell and single-nuclei RNA sequencing and compared epicardial cells from both stages. We found that a migratory fibroblast-like epicardial population only in the fetal heart and fetal epicardium expressed angiogenic gene programs, whereas the adult epicardium was solely mesothelial and immune responsive. Furthermore, we predicted that adult hearts may still receive fetal epicardial paracrine communication, including WNT signaling with endocardium, reinforcing the validity of regenerative strategies that administer or reactivate epicardial cells in situ. Finally, we explained graft efficacy of our human embryonic stem-cell-derived epicardium model by noting its similarity to human fetal epicardium. Overall, our study defines epicardial programs of regenerative angiogenesis absent in adult hearts, contextualizes animal studies and defines epicardial states required for effective human heart regeneration.

11.
Stem Cell Reports ; 16(3): 478-492, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33657418

RESUMEN

COVID-19 patients often develop severe cardiovascular complications, but it remains unclear if these are caused directly by viral infection or are secondary to a systemic response. Here, we examine the cardiac tropism of SARS-CoV-2 in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) and smooth muscle cells (hPSC-SMCs). We find that that SARS-CoV-2 selectively infects hPSC-CMs through the viral receptor ACE2, whereas in hPSC-SMCs there is minimal viral entry or replication. After entry into cardiomyocytes, SARS-CoV-2 is assembled in lysosome-like vesicles and egresses via bulk exocytosis. The viral transcripts become a large fraction of cellular mRNA while host gene expression shifts from oxidative to glycolytic metabolism and upregulates chromatin modification and RNA splicing pathways. Most importantly, viral infection of hPSC-CMs progressively impairs both their electrophysiological and contractile function, and causes widespread cell death. These data support the hypothesis that COVID-19-related cardiac symptoms can result from a direct cardiotoxic effect of SARS-CoV-2.


Asunto(s)
COVID-19/virología , Células Madre Pluripotentes Inducidas/virología , Miocitos Cardíacos/virología , SARS-CoV-2/patogenicidad , Células Cultivadas , Humanos , Empalme del ARN/genética , ARN Mensajero/genética , SARS-CoV-2/genética , Internalización del Virus
12.
Front Cell Dev Biol ; 8: 550504, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195187

RESUMEN

Thoracic aortic diseases, whether sporadic or due to a genetic disorder such as Marfan syndrome, lack effective medical therapies, with limited translation of treatments that are highly successful in mouse models into the clinic. Patient-derived induced pluripotent stem cells (iPSCs) offer the opportunity to establish new human models of aortic diseases. Here we review the power and potential of these systems to identify cellular and molecular mechanisms underlying disease and discuss recent advances, such as gene editing, and smooth muscle cell embryonic lineage. In particular, we discuss the practical aspects of vascular smooth muscle cell derivation and characterization, and provide our personal insights into the challenges and limitations of this approach. Future applications, such as genotype-phenotype association, drug screening, and precision medicine are discussed. We propose that iPSC-derived aortic disease models could guide future clinical trials via "clinical-trials-in-a-dish", thus paving the way for new and improved therapies for patients.

13.
Cancers (Basel) ; 12(11)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202923

RESUMEN

Osteomodulin (OMD) and proline/arginine-rich end leucine repeat protein (PRELP) are secreted extracellular matrix proteins belonging to the small leucine-rich proteoglycans family. We found that OMD and PRELP were specifically expressed in umbrella cells in bladder epithelia, and their expression levels were dramatically downregulated in all bladder cancers from very early stages and various epithelial cancers. Our in vitro studies including gene expression profiling using bladder cancer cell lines revealed that OMD or PRELP application suppressed the cancer progression by inhibiting TGF-ß and EGF pathways, which reversed epithelial-mesenchymal transition (EMT), activated cell-cell adhesion, and inhibited various oncogenic pathways. Furthermore, the overexpression of OMD in bladder cancer cells strongly inhibited the anchorage-independent growth and tumorigenicity in mouse xenograft studies. On the other hand, we found that in the bladder epithelia, the knockout mice of OMD and/or PRELP gene caused partial EMT and a loss of tight junctions of the umbrella cells and resulted in formation of a bladder carcinoma in situ-like structure by spontaneous breakdowns of the umbrella cell layer. Furthermore, the ontological analysis of the expression profiling of an OMD knockout mouse bladder demonstrated very high similarity with those obtained from human bladder cancers. Our data indicate that OMD and PRELP are endogenous inhibitors of cancer initiation and progression by controlling EMT. OMD and/or PRELP may have potential for the treatment of bladder cancer.

14.
Nat Biotechnol ; 37(8): 895-906, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31375810

RESUMEN

The epicardium and its derivatives provide trophic and structural support for the developing and adult heart. Here we tested the ability of human embryonic stem cell (hESC)-derived epicardium to augment the structure and function of engineered heart tissue in vitro and to improve efficacy of hESC-cardiomyocyte grafts in infarcted athymic rat hearts. Epicardial cells markedly enhanced the contractility, myofibril structure and calcium handling of human engineered heart tissues, while reducing passive stiffness compared with mesenchymal stromal cells. Transplanted epicardial cells formed persistent fibroblast grafts in infarcted hearts. Cotransplantation of hESC-derived epicardial cells and cardiomyocytes doubled graft cardiomyocyte proliferation rates in vivo, resulting in 2.6-fold greater cardiac graft size and simultaneously augmenting graft and host vascularization. Notably, cotransplantation improved systolic function compared with hearts receiving either cardiomyocytes alone, epicardial cells alone or vehicle. The ability of epicardial cells to enhance cardiac graft size and function makes them a promising adjuvant therapeutic for cardiac repair.


Asunto(s)
Corazón/fisiología , Células Madre Embrionarias Humanas , Infarto del Miocardio/terapia , Miocitos Cardíacos , Regeneración , Animales , Embrión de Pollo , Regulación de la Expresión Génica , Humanos , Masculino , Ratas , Ratas Desnudas , Ratas Sprague-Dawley , Ingeniería de Tejidos
15.
Elife ; 42015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25942455

RESUMEN

Cellular senescence has been recently linked to the promotion of age-related pathologies, including a decline in regenerative capacity. While such capacity deteriorates with age in mammals, it remains intact in species such as salamanders, which have an extensive repertoire of regeneration and can undergo multiple episodes through their lifespan. Here we show that, surprisingly, there is a significant induction of cellular senescence during salamander limb regeneration, but that rapid and effective mechanisms of senescent cell clearance operate in normal and regenerating tissues. Furthermore, the number of senescent cells does not increase upon repetitive amputation or ageing, in contrast to mammals. Finally, we identify the macrophage as a critical player in this efficient senescent cell clearance mechanism. We propose that effective immunosurveillance of senescent cells in salamanders supports their ability to undergo regeneration throughout their lifespan.


Asunto(s)
Envejecimiento/fisiología , Macrófagos/citología , Células Madre Mesenquimatosas/fisiología , Regeneración/fisiología , Urodelos/fisiología , Cicatrización de Heridas/fisiología , Animales , Efecto Espectador , Muerte Celular , Proliferación Celular , Senescencia Celular/fisiología , Extremidades/lesiones , Extremidades/fisiología , Vigilancia Inmunológica/fisiología , Macrófagos/inmunología , Células Madre Mesenquimatosas/citología , Fagocitosis , Cultivo Primario de Células
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA