Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Bioessays ; 43(7): e2000305, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33984158

RESUMEN

It has long been recognized that cancer onset and progression represent a type of reversion to an ancestral quasi-unicellular phenotype. This general concept has been refined into the atavistic model of cancer that attempts to provide a quantitative analysis and testable predictions based on genomic data. Over the past decade, support for the multicellular-to-unicellular reversion predicted by the atavism model has come from phylostratigraphy. Here, we propose that cancer onset and progression involve more than a one-off multicellular-to-unicellular reversion, and are better described as a series of reversionary transitions. We make new predictions based on the chronology of the unicellular-eukaryote-to-multicellular-eukaryote transition. We also make new predictions based on three other evolutionary transitions that occurred in our lineage: eukaryogenesis, oxidative phosphorylation and the transition to adaptive immunity. We propose several modifications to current phylostratigraphy to improve age resolution to test these predictions. Also see the video abstract here: https://youtu.be/3unEu5JYJrQ.


Asunto(s)
Evolución Biológica , Neoplasias , Eucariontes , Células Eucariotas , Humanos , Neoplasias/genética , Fenotipo
2.
Proc Natl Acad Sci U S A ; 112(33): 10467-72, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240372

RESUMEN

We use a microfabricated ecology with a doxorubicin gradient and population fragmentation to produce a strong Darwinian selective pressure that drives forward the rapid emergence of doxorubicin resistance in multiple myeloma (MM) cancer cells. RNA sequencing of the resistant cells was used to examine (i) emergence of genes with high de novo substitution densities (i.e., hot genes) and (ii) genes never substituted (i.e., cold genes). The set of cold genes, which were 21% of the genes sequenced, were further winnowed down by examining excess expression levels. Both the most highly substituted genes and the most highly expressed never-substituted genes were biased in age toward the most ancient of genes. This would support the model that cancer represents a revision back to ancient forms of life adapted to high fitness under extreme stress, and suggests that these ancient genes may be targets for cancer therapy.


Asunto(s)
Antineoplásicos/química , Resistencia a Antineoplásicos/genética , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Análisis Mutacional de ADN , Doxorrubicina/química , Duplicación de Gen , Genoma Humano , Humanos , Concentración 50 Inhibidora , Proteínas Luminiscentes/metabolismo , Microfluídica , Modelos Estadísticos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Análisis de Secuencia de ARN , Transcriptoma , Proteína Fluorescente Roja
3.
Rep Prog Phys ; 79(10): 102601, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27608530

RESUMEN

Life is so remarkable, and so unlike any other physical system, that it is tempting to attribute special factors to it. Physics is founded on the assumption that universal laws and principles underlie all natural phenomena, but is it far from clear that there are 'laws of life' with serious descriptive or predictive power analogous to the laws of physics. Nor is there (yet) a 'theoretical biology' in the same sense as theoretical physics. Part of the obstacle in developing a universal theory of biological organization concerns the daunting complexity of living organisms. However, many attempts have been made to glimpse simplicity lurking within this complexity, and to capture this simplicity mathematically. In this paper we review a promising new line of inquiry to bring coherence and order to the realm of biology by focusing on 'information' as a unifying concept.


Asunto(s)
Biología , Evolución Biológica , Entropía , Redes Reguladoras de Genes , Vida
4.
Bioessays ; 36(9): 827-35, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25043755

RESUMEN

In the atavistic model of cancer progression, tumor cell dedifferentiation is interpreted as a reversion to phylogenetically earlier capabilities. The more recently evolved capabilities are compromised first during cancer progression. This suggests a therapeutic strategy for targeting cancer: design challenges to cancer that can only be met by the recently evolved capabilities no longer functional in cancer cells. We describe several examples of this target-the-weakness strategy. Our most detailed example involves the immune system. The absence of adaptive immunity in immunosuppressed tumor environments is an irreversible weakness of cancer that can be exploited by creating a challenge that only the presence of adaptive immunity can meet. This leaves tumor cells more vulnerable than healthy tissue to pathogenic attack. Such a target-the-weakness therapeutic strategy has broad applications, and contrasts with current therapies that target the main strength of cancer: cell proliferation.


Asunto(s)
Neoplasias/terapia , Animales , Proliferación Celular , Metabolismo Energético , Humanos , Inmunoterapia , Neoplasias/inmunología , Neoplasias/patología , Fenotipo , Escape del Tumor
6.
Astrobiology ; 22(12): 1443-1451, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36475964

RESUMEN

It may be that habitable planets are common but life is rare. If future advances in telescopes increasingly suggest this is so, humankind might feel motivated to seed lifeless planets with resilient terrestrial organisms or synthetic forms designed to thrive on the target planet. A useful mechanism for achieving this goal at a relatively low cost is to use interstellar comets transiting the Solar System to convey microbial cargoes toward nearby planetary systems, where they could disseminate the inoculum via their dust trails. Conversely, it is conceivable that terrestrial life was deliberately seeded in this matter, a hypothesis that could be tested if we found evidence for life on other Solar System bodies that displayed common basic biochemical signatures. Our scenario raises a number of ethical and technological challenges that need to be addressed.

7.
Prog Biophys Mol Biol ; 165: 49-55, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34371024

RESUMEN

Cancer or cancer-like phenomena pervade multicellular life, implying deep evolutionary roots. Many of the hallmarks of cancer recapitulate unicellular modalities, suggesting that cancer initiation and progression represent a systematic reversion to simpler ancestral phenotypes in response to a stress or insult. This so-called atavism theory may be tested using phylostratigraphy, which can be used to assign ages to genes. Several research groups have confirmed that cancer cells tend to over-express evolutionary older genes, and rewire the architecture linking unicellular and multicellular gene networks. In addition, some of the elevated mutation rate - a well-known hallmark of cancer - is actually self-inflicted, driven by genes found to be homologs of the ancient SOS genes activated in stressed bacteria, and employed to evolve biological workarounds. These findings have obvious implications for therapy.


Asunto(s)
Neoplasias , Bacterias/genética , Evolución Biológica , Redes Reguladoras de Genes , Humanos , Neoplasias/genética , Fenotipo
8.
9.
Sci Rep ; 7(1): 997, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28428620

RESUMEN

Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory, providing simple criteria for open-ended evolution based on two hallmark features: unbounded evolution and innovation. We define unbounded evolution as patterns that are non-repeating within the expected Poincare recurrence time of an isolated system, and innovation as trajectories not observed in isolated systems. As a case study, we implement novel variants of cellular automata (CA) where the update rules are allowed to vary with time in three alternative ways. Each is capable of generating conditions for open-ended evolution, but vary in their ability to do so. We find that state-dependent dynamics, regarded as a hallmark of life, statistically out-performs other candidate mechanisms, and is the only mechanism to produce open-ended evolution in a scalable manner, essential to the notion of ongoing evolution. This analysis suggests a new framework for unifying mechanisms for generating OEE with features distinctive to life and its artifacts, with broad applicability to biological and artificial systems.

10.
Philos Trans A Math Phys Eng Sci ; 374(2063)2016 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-26857675

RESUMEN

We compare the informational architecture of biological and random networks to identify informational features that may distinguish biological networks from random. The study presented here focuses on the Boolean network model for regulation of the cell cycle of the fission yeast Schizosaccharomyces pombe. We compare calculated values of local and global information measures for the fission yeast cell cycle to the same measures as applied to two different classes of random networks: Erdös-Rényi and scale-free. We report patterns in local information processing and storage that do indeed distinguish biological from random, associated with control nodes that regulate the function of the fission yeast cell-cycle network. Conversely, we find that integrated information, which serves as a global measure of 'emergent' information processing, does not differ from random for the case presented. We discuss implications for our understanding of the informational architecture of the fission yeast cell-cycle network in particular, and more generally for illuminating any distinctive physics that may be operative in life.


Asunto(s)
Modelos Biológicos , Schizosaccharomyces/citología , Ciclo Celular , Cinética
11.
J R Soc Interface ; 10(79): 20120869, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23235265

RESUMEN

Although it has been notoriously difficult to pin down precisely what is it that makes life so distinctive and remarkable, there is general agreement that its informational aspect is one key property, perhaps the key property. The unique informational narrative of living systems suggests that life may be characterized by context-dependent causal influences, and, in particular, that top-down (or downward) causation-where higher levels influence and constrain the dynamics of lower levels in organizational hierarchies-may be a major contributor to the hierarchal structure of living systems. Here, we propose that the emergence of life may correspond to a physical transition associated with a shift in the causal structure, where information gains direct and context-dependent causal efficacy over the matter in which it is instantiated. Such a transition may be akin to more traditional physical transitions (e.g. thermodynamic phase transitions), with the crucial distinction that determining which phase (non-life or life) a given system is in requires dynamical information and therefore can only be inferred by identifying causal architecture. We discuss some novel research directions based on this hypothesis, including potential measures of such a transition that may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.


Asunto(s)
Algoritmos , Teoría de la Información , Modelos Biológicos , Origen de la Vida , Exobiología/métodos
12.
Biosystems ; 111(1): 1-10, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23159919

RESUMEN

In this paper we discuss the entropy and information aspects of a living cell. Particular attention is paid to the information gain on assembling and maintaining a living state. Numerical estimates of the information and entropy reduction are given and discussed in the context of the cell's metabolic activity. We discuss a solution to an apparent paradox that there is less information content in DNA than in the proteins that are assembled based on the genetic code encrypted in DNA. When energy input required for protein synthesis is accounted for, the paradox is clearly resolved. Finally, differences between biological information and instruction are discussed.


Asunto(s)
Células/metabolismo , ADN/genética , Entropía , Código Genético/fisiología , Teoría de la Información , Biosíntesis de Proteínas/fisiología , Proteínas/genética , Modelos Teóricos , Probabilidad , Termodinámica
13.
Sci Rep ; 3: 1449, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23618955

RESUMEN

To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Modelos Biológicos , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/fisiopatología , Proteínas de Neoplasias/metabolismo , Línea Celular Tumoral , Movimiento Celular , Tamaño de la Célula , Supervivencia Celular , Simulación por Computador , Humanos
14.
PLoS One ; 7(1): e29230, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22242161

RESUMEN

BACKGROUND: Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria. METHODOLOGY: We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure. PRINCIPAL FINDINGS: We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations. CONCLUSIONS: Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.


Asunto(s)
Neoplasias de la Mama/patología , Mama/patología , Células Epiteliales/patología , Enfermedad Fibroquística de la Mama/patología , Imagenología Tridimensional/métodos , Línea Celular , Núcleo Celular/patología , Femenino , Humanos , Metástasis de la Neoplasia
15.
Science ; 332(6034): 1163-6, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21127214

RESUMEN

Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.


Asunto(s)
Arseniatos/metabolismo , Arsénico/metabolismo , ADN Bacteriano/química , Halomonadaceae/crecimiento & desarrollo , Halomonadaceae/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Arseniatos/análisis , Arsénico/análisis , Arsénico/química , Proteínas Bacterianas/análisis , Proteínas Bacterianas/metabolismo , California , Medios de Cultivo , ADN Bacteriano/metabolismo , Sedimentos Geológicos/microbiología , Halomonadaceae/citología , Halomonadaceae/aislamiento & purificación , Datos de Secuencia Molecular , Fosfatos/análisis , Fósforo/análisis , Fósforo/química , Espectrometría de Masa de Ion Secundario , Vacuolas/ultraestructura , Microbiología del Agua
16.
Astrobiology ; 9(2): 241-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19292603

RESUMEN

Astrobiologists are aware that extraterrestrial life might differ from known life, and considerable thought has been given to possible signatures associated with weird forms of life on other planets. So far, however, very little attention has been paid to the possibility that our own planet might also host communities of weird life. If life arises readily in Earth-like conditions, as many astrobiologists contend, then it may well have formed many times on Earth itself, which raises the question whether one or more shadow biospheres have existed in the past or still exist today. In this paper, we discuss possible signatures of weird life and outline some simple strategies for seeking evidence of a shadow biosphere.


Asunto(s)
Biomarcadores , Planeta Tierra , Fenómenos Ecológicos y Ambientales , Modelos Teóricos , Origen de la Vida , Biomarcadores/química , Biomarcadores/metabolismo , Evolución Molecular , Exobiología , Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA