RESUMEN
Recent progress in both conceptual and technological approaches to human immunology have rejuvenated a field that has long been in the shadow of the inbred mouse model. This is a healthy development both for the clinical relevance of immunology and for the fact that it is a way to gain access to the wealth of phenomenology in the many human diseases that involve the immune system. This is where we are likely to discover new immunological mechanisms and principals, especially those involving genetic heterogeneity or environmental influences that are difficult to model effectively in inbred mice. We also suggest that there are likely to be novel immunological mechanisms in long-lived, less fecund mammals such as human beings since they must remain healthy far longer than short-lived rodents in order for the species to survive.
Asunto(s)
Sistema Inmunológico/fisiología , Inmunidad , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Evolución Biológica , Variación Biológica Poblacional , Supresión Clonal/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Memoria Inmunológica , Modelos Animales , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismoRESUMEN
Cells communicate with each other via receptor-ligand interactions. Here, we describe lentiviral-mediated cell entry by engineered receptor-ligand interaction (ENTER) to display ligand proteins, deliver payloads, and record receptor specificity. We optimize ENTER to decode interactions between T cell receptor (TCR)-MHC peptides, antibody-antigen, and other receptor-ligand pairs. A viral presentation strategy allows ENTER to capture interactions between B cell receptor and any antigen. We engineer ENTER to deliver genetic payloads to antigen-specific T or B cells to selectively modulate cellular behavior in mixed populations. Single-cell readout of ENTER by RNA sequencing (ENTER-seq) enables multiplexed enumeration of antigen specificities, TCR clonality, cell type, and states of individual T cells. ENTER-seq of CMV-seropositive patient blood samples reveals the viral epitopes that drive effector memory T cell differentiation and inter-clonal vs. intra-clonal phenotypic diversity targeting the same epitope. ENTER technology enables systematic discovery of receptor specificity, linkage to cell fates, and antigen-specific cargo delivery.
Asunto(s)
Receptores de Antígenos de Linfocitos T , Internalización del Virus , Humanos , Biología , Epítopos , Ligandos , Péptidos , Receptores de Antígenos de Linfocitos T/metabolismo , Análisis de la Célula Individual , GenómicaRESUMEN
During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.
Asunto(s)
Anticuerpos Antivirales , Vacuna BNT162 , COVID-19 , Centro Germinal , Antígenos Virales , COVID-19/prevención & control , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus , VacunaciónRESUMEN
A subset of individuals exposed to Mycobacterium tuberculosis (Mtb) that we refer to as 'resisters' (RSTR) show evidence of IFN-γ- T cell responses to Mtb-specific antigens despite serially negative results on clinical testing. Here we found that Mtb-specific T cells in RSTR were clonally expanded, confirming the priming of adaptive immune responses following Mtb exposure. RSTR CD4+ T cells showed enrichment of TH17 and regulatory T cell-like functional programs compared to Mtb-specific T cells from individuals with latent Mtb infection. Using public datasets, we showed that these TH17 cell-like functional programs were associated with lack of progression to active tuberculosis among South African adolescents with latent Mtb infection and with bacterial control in nonhuman primates. Our findings suggested that RSTR may successfully control Mtb following exposure and immune priming and established a set of T cell biomarkers to facilitate further study of this clinical phenotype.
Asunto(s)
Linfocitos T CD4-Positivos , Mycobacterium tuberculosis , Tuberculosis , Mycobacterium tuberculosis/inmunología , Humanos , Animales , Adolescente , Tuberculosis/inmunología , Tuberculosis/microbiología , Linfocitos T CD4-Positivos/inmunología , Células Th17/inmunología , Femenino , Macaca mulatta , Masculino , Fenotipo , Interferón gamma/metabolismo , Interferón gamma/inmunología , Antígenos Bacterianos/inmunología , Tuberculosis Latente/inmunología , Tuberculosis Latente/microbiología , Sudáfrica , Adulto Joven , Linfocitos T Reguladores/inmunología , AdultoRESUMEN
Post-translational modifications of histone proteins and exchanges of histone variants of chromatin are central to the regulation of nearly all DNA-templated biological processes. However, the degree and variability of chromatin modifications in specific human immune cells remain largely unknown. Here, we employ a highly multiplexed mass cytometry analysis to profile the global levels of a broad array of chromatin modifications in primary human immune cells at the single-cell level. Our data reveal markedly different cell-type- and hematopoietic-lineage-specific chromatin modification patterns. Differential analysis between younger and older adults shows that aging is associated with increased heterogeneity between individuals and elevated cell-to-cell variability in chromatin modifications. Analysis of a twin cohort unveils heritability of chromatin modifications and demonstrates that aging-related chromatin alterations are predominantly driven by non-heritable influences. Together, we present a powerful platform for chromatin and immunology research. Our discoveries highlight the profound impacts of aging on chromatin modifications.
Asunto(s)
Envejecimiento , Cromatina/química , Epigénesis Genética , Adolescente , Adulto , Anciano , Linaje de la Célula , Separación Celular , Enfermedades en Gemelos , Femenino , Citometría de Flujo , Histonas/metabolismo , Humanos , Sistema Inmunológico , Inmunofenotipificación , Leucocitos Mononucleares/citología , Masculino , Persona de Mediana Edad , Monocitos/citología , Análisis de Componente Principal , Procesamiento Proteico-Postraduccional , Sistema de Registros , Adulto JovenRESUMEN
TCR-signaling strength generally correlates with peptide-MHC binding affinity; however, exceptions exist. We find high-affinity, yet non-stimulatory, interactions occur with high frequency in the human T cell repertoire. Here, we studied human TCRs that are refractory to activation by pMHC ligands despite robust binding. Analysis of 3D affinity, 2D dwell time, and crystal structures of stimulatory versus non-stimulatory TCR-pMHC interactions failed to account for their different signaling outcomes. Using yeast pMHC display, we identified peptide agonists of a formerly non-responsive TCR. Single-molecule force measurements demonstrated the emergence of catch bonds in the activating TCR-pMHC interactions, correlating with exclusion of CD45 from the TCR-APC contact site. Molecular dynamics simulations of TCR-pMHC disengagement distinguished agonist from non-agonist ligands based on the acquisition of catch bonds within the TCR-pMHC interface. The isolation of catch bonds as a parameter mediating the coupling of TCR binding and signaling has important implications for TCR and antigen engineering for immunotherapy.
Asunto(s)
Antígenos de Histocompatibilidad Clase I/fisiología , Activación de Linfocitos/fisiología , Adulto , Femenino , Humanos , Cinética , Ligandos , Complejo Mayor de Histocompatibilidad/fisiología , Masculino , Persona de Mediana Edad , Simulación de Dinámica Molecular , Oligopéptidos , Péptidos , Unión Proteica/fisiología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/fisiología , Transducción de Señal , Imagen Individual de Molécula , Linfocitos T/fisiologíaRESUMEN
The immune system can mount T cell responses against tumors; however, the antigen specificities of tumor-infiltrating lymphocytes (TILs) are not well understood. We used yeast-display libraries of peptide-human leukocyte antigen (pHLA) to screen for antigens of "orphan" T cell receptors (TCRs) expressed on TILs from human colorectal adenocarcinoma. Four TIL-derived TCRs exhibited strong selection for peptides presented in a highly diverse pHLA-A∗02:01 library. Three of the TIL TCRs were specific for non-mutated self-antigens, two of which were present in separate patient tumors, and shared specificity for a non-mutated self-antigen derived from U2AF2. These results show that the exposed recognition surface of MHC-bound peptides accessible to the TCR contains sufficient structural information to enable the reconstruction of sequences of peptide targets for pathogenic TCRs of unknown specificity. This finding underscores the surprising specificity of TCRs for their cognate antigens and enables the facile indentification of tumor antigens through unbiased screening.
Asunto(s)
Adenocarcinoma/inmunología , Antígenos de Neoplasias/inmunología , Neoplasias Colorrectales/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Anciano , Animales , Antígenos de Neoplasias/química , Línea Celular Tumoral , Células Cultivadas , Células HEK293 , Antígenos HLA-A/química , Antígenos HLA-A/inmunología , Humanos , Masculino , Persona de Mediana Edad , Biblioteca de Péptidos , Células Sf9 , SpodopteraRESUMEN
In vitro cancer cultures, including three-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to recapitulate the tumor microenvironment (TME). The co-culture of primary tumor epithelia with endogenous, syngeneic tumor-infiltrating lymphocytes (TILs) as a cohesive unit has been particularly elusive. Here, an air-liquid interface (ALI) method propagated patient-derived organoids (PDOs) from >100 human biopsies or mouse tumors in syngeneic immunocompetent hosts as tumor epithelia with native embedded immune cells (T, B, NK, macrophages). Robust droplet-based, single-cell simultaneous determination of gene expression and immune repertoire indicated that PDO TILs accurately preserved the original tumor T cell receptor (TCR) spectrum. Crucially, human and murine PDOs successfully modeled immune checkpoint blockade (ICB) with anti-PD-1- and/or anti-PD-L1 expanding and activating tumor antigen-specific TILs and eliciting tumor cytotoxicity. Organoid-based propagation of primary tumor epithelium en bloc with endogenous immune stroma should enable immuno-oncology investigations within the TME and facilitate personalized immunotherapy testing.
Asunto(s)
Modelos Inmunológicos , Neoplasias Experimentales/inmunología , Organoides/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Animales , Antígeno B7-H1/inmunología , Técnicas de Cocultivo , Femenino , Humanos , Inmunoterapia , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Organoides/patologíaRESUMEN
T cells are a critical component of the response to SARS-CoV-2, but their kinetics after infection and vaccination are insufficiently understood. Using "spheromer" peptide-MHC multimer reagents, we analyzed healthy subjects receiving two doses of the Pfizer/BioNTech BNT162b2 vaccine. Vaccination resulted in robust spike-specific T cell responses for the dominant CD4+ (HLA-DRB1∗15:01/S191) and CD8+ (HLA-A∗02/S691) T cell epitopes. Antigen-specific CD4+ and CD8+ T cell responses were asynchronous, with the peak CD4+ T cell responses occurring 1 week post the second vaccination (boost), whereas CD8+ T cells peaked 2 weeks later. These peripheral T cell responses were elevated compared with COVID-19 patients. We also found that previous SARS-CoV-2 infection resulted in decreased CD8+ T cell activation and expansion, suggesting that previous infection can influence the T cell response to vaccination.
Asunto(s)
COVID-19 , Vacunas , Humanos , Linfocitos T CD8-positivos , Vacuna BNT162 , SARS-CoV-2 , Vacunación , Anticuerpos AntiviralesRESUMEN
While inbred mice have informed most of what we know about the immune system in the modern era, they have clear limitations with respect to their ability to be informative regarding genetic heterogeneity or microbial influences. They have also not been very predictive as models of human disease or vaccination results. Although there are concerted attempts to compensate for these flaws, the rapid rise of human studies, driven by both technical and conceptual advances, promises to fill in these gaps, as well as provide direct information about human diseases and vaccination responses. Work on human immunity has already provided important additional perspectives on basic immunology such as the importance of clonal deletion to self-tolerance, and while many challenges remain, it seems inevitable that "the human model" will continue to inform us about the immune system and even allow for the discovery of new mechanisms.
Asunto(s)
Supresión Clonal , Sistema Inmunológico , Animales , Humanos , Sistema Inmunológico/fisiología , Ratones , Autotolerancia , VacunaciónRESUMEN
Meyer et al. find that subjects lacking the AIRE gene, critical for self-tolerance in T lymphocytes, show a broad range of autoantibody specificities, which can have extremely high affinities. The data also suggest that some of these autoantibodies can, surprisingly, prevent some types of autoimmunity, particularly type I diabetes.
Asunto(s)
Autoinmunidad/inmunología , Autotolerancia/genética , Autoanticuerpos/inmunología , Humanos , Tolerancia Inmunológica , Linfocitos T/inmunología , Timo , Factores de Transcripción/genéticaRESUMEN
To identify disease-relevant T cell receptors (TCRs) with shared antigen specificity, we analyzed 778,938 TCRß chain sequences from 178 non-small cell lung cancer patients using the GLIPH2 (grouping of lymphocyte interactions with paratope hotspots 2) algorithm. We identified over 66,000 shared specificity groups, of which 435 were clonally expanded and enriched in tumors compared to adjacent lung. The antigenic epitopes of one such tumor-enriched specificity group were identified using a yeast peptide-HLA A∗02:01 display library. These included a peptide from the epithelial protein TMEM161A, which is overexpressed in tumors and cross-reactive epitopes from Epstein-Barr virus and E. coli. Our findings suggest that this cross-reactivity may underlie the presence of virus-specific T cells in tumor infiltrates and that pathogen cross-reactivity may be a feature of multiple cancers. The approach and analytical pipelines generated in this work, as well as the specificity groups defined here, present a resource for understanding the T cell response in cancer.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Mapeo Epitopo/métodos , Epítopos de Linfocito T/genética , Neoplasias Pulmonares/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Linfocitos T/inmunología , Algoritmos , Presentación de Antígeno , Antígenos de Neoplasias/metabolismo , Células Cultivadas , Reacciones Cruzadas , Epítopos de Linfocito T/metabolismo , Antígeno HLA-A2/metabolismo , Humanos , Unión Proteica , Especificidad del Receptor de Antígeno de Linfocitos TRESUMEN
There is considerable heterogeneity in immunological parameters between individuals, but its sources are largely unknown. To assess the relative contribution of heritable versus non-heritable factors, we have performed a systems-level analysis of 210 healthy twins between 8 and 82 years of age. We measured 204 different parameters, including cell population frequencies, cytokine responses, and serum proteins, and found that 77% of these are dominated (>50% of variance) and 58% almost completely determined (>80% of variance) by non-heritable influences. In addition, some of these parameters become more variable with age, suggesting the cumulative influence of environmental exposure. Similarly, the serological responses to seasonal influenza vaccination are also determined largely by non-heritable factors, likely due to repeated exposure to different strains. Lastly, in MZ twins discordant for cytomegalovirus infection, more than half of all parameters are affected. These results highlight the largely reactive and adaptive nature of the immune system in healthy individuals.
Asunto(s)
Inmunidad , Gemelos Dicigóticos , Gemelos Monocigóticos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/inmunología , Niño , Citocinas/inmunología , Infecciones por Citomegalovirus/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Persona de Mediana Edad , Adulto JovenRESUMEN
In vitro models of autoimmunity are constrained by an inability to culture affected epithelium alongside the complex tissue-resident immune microenvironment. Coeliac disease (CeD) is an autoimmune disease in which dietary gluten-derived peptides bind to the major histocompatibility complex (MHC) class II human leukocyte antigen molecules (HLA)-DQ2 or HLA-DQ8 to initiate immune-mediated duodenal mucosal injury1-4. Here, we generated air-liquid interface (ALI) duodenal organoids from intact fragments of endoscopic biopsies that preserve epithelium alongside native mesenchyme and tissue-resident immune cells as a unit without requiring reconstitution. The immune diversity of ALI organoids spanned T cells, B and plasma cells, natural killer (NK) cells and myeloid cells, with extensive T-cell and B-cell receptor repertoires. HLA-DQ2.5-restricted gluten peptides selectively instigated epithelial destruction in HLA-DQ2.5-expressing organoids derived from CeD patients, and this was antagonized by blocking MHC-II or NKG2C/D. Gluten epitopes stimulated a CeD organoid immune network response in lymphoid and myeloid subsets alongside anti-transglutaminase 2 (TG2) autoantibody production. Functional studies in CeD organoids revealed that interleukin-7 (IL-7) is a gluten-inducible pathogenic modulator that regulates CD8+ T-cell NKG2C/D expression and is necessary and sufficient for epithelial destruction. Furthermore, endogenous IL-7 was markedly upregulated in patient biopsies from active CeD compared with remission disease from gluten-free diets, predominantly in lamina propria mesenchyme. By preserving the epithelium alongside diverse immune populations, this human in vitro CeD model recapitulates gluten-dependent pathology, enables mechanistic investigation and establishes a proof of principle for the organoid modelling of autoimmunity.
Asunto(s)
Enfermedad Celíaca , Duodeno , Interleucina-7 , Mucosa Intestinal , Modelos Biológicos , Organoides , Humanos , Autoanticuerpos/inmunología , Autoinmunidad , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biopsia , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/patología , Enfermedad Celíaca/metabolismo , Duodeno/inmunología , Duodeno/patología , Duodeno/metabolismo , Epítopos/inmunología , Glútenes/inmunología , Glútenes/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/inmunología , Antígenos HLA-DQ/inmunología , Antígenos HLA-DQ/metabolismo , Interleucina-7/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Células Asesinas Naturales/inmunología , Células Mieloides/inmunología , Organoides/inmunología , Organoides/metabolismo , Organoides/patología , Proteína Glutamina Gamma Glutamiltransferasa 2/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismoRESUMEN
Systems-biology approaches in immunology take various forms, but here we review strategies for measuring a broad swath of immunological functions as a means of discovering previously unknown relationships and phenomena and as a powerful way of understanding the immune system as a whole. This approach has rejuvenated the field of vaccine development and has fostered hope that new ways will be found to combat infectious diseases that have proven refractory to classical approaches. Systems immunology also presents an important new strategy for understanding human immunity directly, taking advantage of the many ways the immune system of humans can be manipulated.
Asunto(s)
Alergia e Inmunología , Sistema Inmunológico/inmunología , Técnicas Inmunológicas/métodos , Biología de Sistemas/métodos , Humanos , Transducción de Señal/inmunología , Vacunas/inmunologíaRESUMEN
B cells are capable of a wide range of effector functions including antibody secretion, antigen presentation, cytokine production, and generation of immunological memory. A consistent strategy for classifying human B cells by using surface molecules is essential to harness this functional diversity for clinical translation. We developed a highly multiplexed screen to quantify the co-expression of 351 surface molecules on millions of human B cells. We identified differentially expressed molecules and aligned their variance with isotype usage, VDJ sequence, metabolic profile, biosynthesis activity, and signaling response. Based on these analyses, we propose a classification scheme to segregate B cells from four lymphoid tissues into twelve unique subsets, including a CD45RB+CD27- early memory population, a class-switched CD39+ tonsil-resident population, and a CD19hiCD11c+ memory population that potently responds to immune activation. This classification framework and underlying datasets provide a resource for further investigations of human B cell identity and function.
Asunto(s)
Subgrupos de Linfocitos B/clasificación , Subgrupos de Linfocitos B/inmunología , Isotipos de Inmunoglobulinas/metabolismo , Proteínas de la Membrana/metabolismo , 5'-Nucleotidasa/metabolismo , Apirasa/metabolismo , Antígeno CD11c/metabolismo , Femenino , Proteínas Ligadas a GPI/metabolismo , Humanos , Memoria Inmunológica/inmunología , Antígenos Comunes de Leucocito/metabolismo , Persona de Mediana Edad , Transducción de Señal/inmunología , Receptor fas/metabolismoRESUMEN
In order to survey a universe of major histocompatibility complex (MHC)-presented peptide antigens whose numbers greatly exceed the diversity of the T cell repertoire, T cell receptors (TCRs) are thought to be cross-reactive. However, the nature and extent of TCR cross-reactivity has not been conclusively measured experimentally. We developed a system to identify MHC-presented peptide ligands by combining TCR selection of highly diverse yeast-displayed peptide-MHC libraries with deep sequencing. Although we identified hundreds of peptides reactive with each of five different mouse and human TCRs, the selected peptides possessed TCR recognition motifs that bore a close resemblance to their known antigens. This structural conservation of the TCR interaction surface allowed us to exploit deep-sequencing information to computationally identify activating microbial and self-ligands for human autoimmune TCRs. The mechanistic basis of TCR cross-reactivity described here enables effective surveillance of diverse self and foreign antigens without necessitating degenerate recognition of nonhomologous peptides.
Asunto(s)
Péptidos/química , Receptores de Antígenos de Linfocitos T/química , Linfocitos T/inmunología , Algoritmos , Secuencia de Aminoácidos , Animales , Reacciones Cruzadas , Antígenos HLA/inmunología , Antígenos HLA/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ligandos , Ratones , Modelos Moleculares , Biblioteca de Péptidos , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/químicaRESUMEN
Most adaptive immune responses require the activation of specific T cells through the T cell antigen receptor (TCR)-CD3 complex. Here we show that cholesterol sulfate (CS), a naturally occurring analog of cholesterol, inhibits CD3 ITAM phosphorylation, a crucial first step in T cell activation. In biochemical studies, CS disrupted TCR multimers, apparently by displacing cholesterol, which is known to bind TCRß. Moreover, CS-deficient mice showed heightened sensitivity to a self-antigen, whereas increasing CS content by intrathymic injection inhibited thymic selection, indicating that this molecule is an intrinsic regulator of thymocyte development. These results reveal a regulatory role for CS in TCR signaling and thymic selection, highlighting the importance of the membrane microenvironment in modulating cell surface receptor activation.
Asunto(s)
Membrana Celular/metabolismo , Ésteres del Colesterol/metabolismo , Colesterol/metabolismo , Linfocitos T/fisiología , Timo/inmunología , Animales , Autoinmunidad/genética , Células Cultivadas , Colesterol/análogos & derivados , Selección Clonal Mediada por Antígenos , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Multimerización de Proteína/genética , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Transducción de Señal , Sulfotransferasas/genéticaRESUMEN
Despite evidence that γδ T cells play an important role during malaria, their precise role remains unclear. During murine malaria induced by Plasmodium chabaudi infection and in human P. falciparum infection, we found that γδ T cells expanded rapidly after resolution of acute parasitemia, in contrast to αß T cells that expanded at the acute stage and then declined. Single-cell sequencing showed that TRAV15N-1 (Vδ6.3) γδ T cells were clonally expanded in mice and had convergent complementarity-determining region 3 sequences. These γδ T cells expressed specific cytokines, M-CSF, CCL5, CCL3, which are known to act on myeloid cells, indicating that this γδ T cell subset might have distinct functions. Both γδ T cells and M-CSF were necessary for preventing parasitemic recurrence. These findings point to an M-CSF-producing γδ T cell subset that fulfills a specialized protective role in the later stage of malaria infection when αß T cells have declined.