Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Pregnancy Childbirth ; 24(1): 127, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347445

RESUMEN

INTRODUCTION: Adverse birth outcomes particularly preterm births and congenital anomalies, are the leading causes of infant mortality globally, and the burden is highest in developing countries. We set out to determine the frequency of adverse birth outcomes and the risk factors associated with such outcomes in a cohort of pregnant women in Kenya. METHODS: From October 2017 to July 2019, pregnant women < 28 weeks gestation were enrolled and followed up until delivery in three hospitals in coastal Kenya. Newborns were examined at delivery. Among women with birth outcome data, we assessed the frequency of congenital anomalies defined as gastroschisis, umbilical hernia, limb abnormalities and Trisomy 21, and adverse birth outcomes, defined as either stillbirth, miscarriage, preterm birth, small for gestational age, or microcephaly. We used log-binomial regression to identify maternal characteristics associated with the presence of at least one adverse outcome. RESULTS: Among the 2312 women enrolled, 1916 (82.9%) had birth outcome data. Overall, 402/1916 (20.9%; 95% confidence interval (CI): 19.1-22.8) pregnancies had adverse birth outcomes. Specifically, 66/1916 (3.4%; 95% CI: 2.7-4.4) were stillbirths, 34/1916 (1.8%; 95% CI: 1.2-2.4) were miscarriages and 23/1816 (1.2%; 95% CI: 0.8-1.9) had congenital anomalies. Among the participants with anthropometric measurements data, 142/1200 (11.8%; 95% CI: 10.1 - 13.8) were small for gestational age and among the participants with ultrasound records, 143/1711 (8.4%; 95% CI: 7.1-9.8) were preterm. Febrile illnesses in current pregnancy (adjusted risk ratio (aRR): 1.7; 95% CI: 1.1-2.8), a history of poor birth outcomes in prior pregnancy (aRR: 1.8; 95% CI: 1.3-2.4) and high blood pressure in pregnancy (aRR: 3.9, 95% CI: (1.7-9.2) were independently associated with adverse birth outcomes in a model that included age, education, human immunodeficiency virus status and high blood pressure at enrolment. CONCLUSION: We found similar rates of overall adverse birth outcomes, congenital anomalies, and small for gestational age but higher rates of stillbirths and lower rates of prematurity compared to the rates that have been reported in the sub-Saharan Africa region. However, the rates of adverse birth outcomes in this study were comparable to other studies conducted in Kenya. Febrile illnesses during the current pregnancy, previous history of poor birth outcomes and high blood pressure in pregnancy are predictive of an increased risk of adverse birth outcomes.


Asunto(s)
Aborto Espontáneo , Hipertensión , Complicaciones del Embarazo , Nacimiento Prematuro , Embarazo , Recién Nacido , Femenino , Humanos , Mortinato/epidemiología , Resultado del Embarazo/epidemiología , Mujeres Embarazadas , Kenia/epidemiología , Nacimiento Prematuro/epidemiología , Complicaciones del Embarazo/epidemiología , Factores de Riesgo , Aborto Espontáneo/epidemiología , Retardo del Crecimiento Fetal
2.
BMC Med ; 21(1): 106, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949456

RESUMEN

BACKGROUND: Influenza is a major year-round cause of respiratory illness in Kenya, particularly in children under 5. Current influenza vaccines result in short-term, strain-specific immunity and were found in a previous study not to be cost-effective in Kenya. However, next-generation vaccines are in development that may have a greater impact and cost-effectiveness profile. METHODS: We expanded a model previously used to evaluate the cost-effectiveness of seasonal influenza vaccines in Kenya to include next-generation vaccines by allowing for enhanced vaccine characteristics and multi-annual immunity. We specifically examined vaccinating children under 5 years of age with improved vaccines, evaluating vaccines with combinations of increased vaccine effectiveness, cross-protection between strains (breadth) and duration of immunity. We evaluated cost-effectiveness using incremental cost-effectiveness ratios (ICERs) and incremental net monetary benefits (INMBs) for a range of values for the willingness-to-pay (WTP) per DALY averted. Finally, we estimated threshold per-dose vaccine prices at which vaccination becomes cost-effective. RESULTS: Next-generation vaccines can be cost-effective, dependent on the vaccine characteristics and assumed WTP thresholds. Universal vaccines (assumed to provide long-term and broad immunity) are most cost-effective in Kenya across three of four WTP thresholds evaluated, with the lowest median value of ICER per DALY averted ($263, 95% Credible Interval (CrI): $ - 1698, $1061) and the highest median INMBs. At a WTP of $623, universal vaccines are cost-effective at or below a median price of $5.16 per dose (95% CrI: $0.94, $18.57). We also show that the assumed mechanism underlying infection-derived immunity strongly impacts vaccine outcomes. CONCLUSIONS: This evaluation provides evidence for country-level decision makers about future next-generation vaccine introduction, as well as global research funders about the potential market for these vaccines. Next-generation vaccines may offer a cost-effective intervention to reduce influenza burden in low-income countries with year-round seasonality like Kenya.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Niño , Humanos , Preescolar , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Análisis Costo-Beneficio , Kenia/epidemiología , Vacunación
3.
Clin Infect Dis ; 73(Suppl_5): S351-S359, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34910182

RESUMEN

BACKGROUND: Minimally invasive tissue sampling (MITS) is an alternative to complete autopsy for determining causes of death. Multiplex molecular testing performed on MITS specimens poses challenges of interpretation, due to high sensitivity and indiscriminate detection of pathogenic, commensal, or contaminating microorganisms. METHODS: MITS was performed on 20 deceased children with respiratory illness, at 10 timepoints up to 88 hours postmortem. Samples were evaluated by multiplex molecular testing on fresh tissues by TaqMan® Array Card (TAC) and by histopathology, special stains, immunohistochemistry (IHC), and molecular testing (PCR) on formalin-fixed, paraffin-embedded (FFPE) tissues. Results were correlated to determine overall pathologic and etiologic diagnoses and to guide interpretation of TAC results. RESULTS: MITS specimens collected up to 3 days postmortem were adequate for histopathologic evaluation and testing. Seven different etiologic agents were detected by TAC in 10 cases. Three cases had etiologic agents detected by FFPE or other methods and not TAC; 2 were agents not present on TAC, and 2 were streptococci that may have been species other than those present on TAC. Result agreement was 43% for TAC and IHC or PCR, and 69% for IHC and PCR. Extraneous TAC results were common, especially when aspiration was present. CONCLUSIONS: TAC can be performed on MITS up to 3 days after death with refrigeration and provides a sensitive method for detection of pathogens but requires careful interpretation in the context of clinicoepidemiologic and histopathologic findings. Interpretation of all diagnostic tests in aggregate to establish overall case diagnoses maximizes the utility of TAC in MITS.


Asunto(s)
Manejo de Especímenes , Autopsia , Niño , Humanos , Inmunohistoquímica
4.
Clin Infect Dis ; 73(Suppl_5): S360-S367, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34910183

RESUMEN

BACKGROUND: We used postmortem minimally invasive tissue sampling (MITS) to assess the effect of time since death on molecular detection of pathogens among respiratory illness-associated deaths. METHODS: Samples were collected from 20 deceased children (aged 1-59 months) hospitalized with respiratory illness from May 2018 through February 2019. Serial lung and/or liver and blood samples were collected using MITS starting soon after death and every 6 hours thereafter for up to 72 hours. Bodies were stored in the mortuary refrigerator for the duration of the study. All specimens were analyzed using customized multipathogen TaqMan® array cards (TACs). RESULTS: We identified a median of 3 pathogens in each child's lung tissue (range, 1-8; n = 20), 3 pathogens in each child's liver tissue (range, 1-4; n = 5), and 2 pathogens in each child's blood specimen (range, 0-4; n = 5). Pathogens were not consistently detected across all collection time points; there was no association between postmortem interval and the number of pathogens detected (P = .43) and no change in TAC cycle threshold value over time for pathogens detected in lung tissue. Human ribonucleoprotein values indicated that specimens collected were suitable for testing throughout the study period. CONCLUSIONS: Results suggest that lung, liver, and blood specimens can be collected using MITS procedures up to 4 days after death in adequately preserved bodies. However, inconsistent pathogen detection in samples needs careful consideration before drawing definitive conclusions on the etiologic causes of death.


Asunto(s)
Pulmón , Manejo de Especímenes , Autopsia/métodos , Causas de Muerte , Niño , Preescolar , Recolección de Datos , Humanos , Lactante , Manejo de Especímenes/métodos
5.
BMC Med ; 19(1): 318, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34847950

RESUMEN

BACKGROUND: How best to prioritise COVID-19 vaccination within and between countries has been a public health and an ethical challenge for decision-makers globally. We reviewed epidemiological and economic modelling evidence on population priority groups to minimise COVID-19 mortality, transmission, and morbidity outcomes. METHODS: We searched the National Institute of Health iSearch COVID-19 Portfolio (a database of peer-reviewed and pre-print articles), Econlit, the Centre for Economic Policy Research, and the National Bureau of Economic Research for mathematical modelling studies evaluating the impact of prioritising COVID-19 vaccination to population target groups. The first search was conducted on March 3, 2021, and an updated search on the LMIC literature was conducted from March 3, 2021, to September 24, 2021. We narratively synthesised the main study conclusions on prioritisation and the conditions under which the conclusions changed. RESULTS: The initial search identified 1820 studies and 36 studies met the inclusion criteria. The updated search on LMIC literature identified 7 more studies. 43 studies in total were narratively synthesised. 74% of studies described outcomes in high-income countries (single and multi-country). We found that for countries seeking to minimise deaths, prioritising vaccination of senior adults was the optimal strategy and for countries seeking to minimise cases the young were prioritised. There were several exceptions to the main conclusion, notably that reductions in deaths could be increased if groups at high risk of both transmission and death could be further identified. Findings were also sensitive to the level of vaccine coverage. CONCLUSION: The evidence supports WHO SAGE recommendations on COVID-19 vaccine prioritisation. There is, however, an evidence gap on optimal prioritisation for low- and middle-income countries, studies that included an economic evaluation, and studies that explore prioritisation strategies if the aim is to reduce overall health burden including morbidity.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Salud Pública , SARS-CoV-2 , Vacunación
6.
BMC Med ; 18(1): 223, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32814581

RESUMEN

BACKGROUND: There is substantial burden of seasonal influenza in Kenya, which led the government to consider introducing a national influenza vaccination programme. Given the cost implications of a nationwide programme, local economic evaluation data are needed to inform policy on the design and benefits of influenza vaccination. We set out to estimate the cost-effectiveness of seasonal influenza vaccination in Kenya. METHODS: We fitted an age-stratified dynamic transmission model to active surveillance data from patients with influenza from 2010 to 2018. Using a societal perspective, we developed a decision tree cost-effectiveness model and estimated the incremental cost-effectiveness ratio (ICER) per disability-adjusted life year (DALY) averted for three vaccine target groups: children 6-23 months (strategy I), 2-5 years (strategy II) and 6-14 years (strategy III) with either the Southern Hemisphere influenza vaccine (Strategy A) or Northern Hemisphere vaccine (Strategy B) or both (Strategy C: twice yearly vaccination campaigns, or Strategy D: year-round vaccination campaigns). We assessed cost-effectiveness by calculating incremental net monetary benefits (INMB) using a willingness-to-pay (WTP) threshold of 1-51% of the annual gross domestic product per capita ($17-$872). RESULTS: The mean number of infections across all ages was 2-15 million per year. When vaccination was well timed to influenza activity, the annual mean ICER per DALY averted for vaccinating children 6-23 months ranged between $749 and $1385 for strategy IA, $442 and $1877 for strategy IB, $678 and $4106 for strategy IC and $1147 and $7933 for strategy ID. For children 2-5 years, it ranged between $945 and $1573 for strategy IIA, $563 and $1869 for strategy IIB, $662 and $4085 for strategy IIC, and $1169 and $7897 for strategy IID. For children 6-14 years, it ranged between $923 and $3116 for strategy IIIA, $1005 and $2223 for strategy IIIB, $883 and $4727 for strategy IIIC and $1467 and $6813 for strategy IIID. Overall, no vaccination strategy was cost-effective at the minimum ($17) and median ($445) WTP thresholds. Vaccinating children 6-23 months once a year had the highest mean INMB value at $872 (WTP threshold upper limit); however, this strategy had very low probability of the highest net benefit. CONCLUSION: Vaccinating children 6-23 months once a year was the most favourable vaccination option; however, the strategy is unlikely to be cost-effective given the current WTP thresholds.


Asunto(s)
Transmisión de Enfermedad Infecciosa/economía , Transmisión de Enfermedad Infecciosa/prevención & control , Vacunas contra la Influenza/economía , Gripe Humana/economía , Gripe Humana/prevención & control , Análisis Costo-Beneficio , Femenino , Humanos , Lactante , Kenia , Masculino
7.
Paediatr Respir Rev ; 35: 70-74, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32654854

RESUMEN

As the coronavirus pandemic extends to low and middle income countries (LMICs), there are growing concerns about the risk of coronavirus disease (COVID-19) in populations with high prevalence of comorbidities, the impact on health and economies more broadly and the capacity of existing health systems to manage the additional burden of COVID-19. The direct effects of COVID are less of a concern in children, who seem to be largely asymptomatic or to develop mild illness as occurs in high income countries; however children in LMICs constitute a high proportion of the population and may have a high prevalence of risk factors for severe lower respiratory infection such as HIV or malnutrition. Further diversion of resources from child health to address the pandemic among adults may further impact on care for children. Poor living conditions in LMICs including lack of sanitation, running water and overcrowding may facilitate transmission of SARS-CoV-2. The indirect effects of the pandemic on child health are of considerable concern, including increasing poverty levels, disrupted schooling, lack of access to school feeding schemes, reduced access to health facilities and interruptions in vaccination and other child health programs. Further challenges in LMICs include the inability to implement effective public health measures such as social distancing, hand hygiene, timely identification of infected people with self-isolation and universal use of masks. Lack of adequate personal protective equipment, especially N95 masks is a key concern for health care worker protection. While continued schooling is crucial for children in LMICs, provision of safe environments is especially challenging in overcrowded resource constrained schools. The current crisis is a harsh reminder of the global inequity in health in LMICs. The pandemic highlights key challenges to the provision of health in LMICs, but also provides opportunities to strengthen child health broadly in such settings.


Asunto(s)
Salud Infantil , Infecciones por Coronavirus/epidemiología , Países en Desarrollo , Neumonía Viral/epidemiología , Betacoronavirus , COVID-19 , Niño , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/terapia , Aglomeración , Educación , Infecciones por VIH/epidemiología , Humanos , Desnutrición/epidemiología , Pandemias/prevención & control , Equipo de Protección Personal/provisión & distribución , Neumonía Viral/prevención & control , Neumonía Viral/terapia , Pobreza/estadística & datos numéricos , Factores de Riesgo , SARS-CoV-2 , Saneamiento/estadística & datos numéricos , Abastecimiento de Agua/estadística & datos numéricos
8.
PLoS One ; 19(2): e0297274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38386647

RESUMEN

Tracking livestock abortion patterns over time and across factors such as species and agroecological zones (AEZs) could inform policies to mitigate disease emergence, zoonoses risk, and reproductive losses. We conducted a year-long population-based active surveillance of livestock abortion between 2019 and 2020, in administrative areas covering 52% of Kenya's landmass and home to 50% of Kenya's livestock. Surveillance sites were randomly selected to represent all AEZs in the country. Local animal health practitioners electronically transmitted weekly abortion reports from each ward, the smallest administrative unit, to a central server, using a simple short messaging service (SMS). Data were analyzed descriptively by administrative unit, species, and AEZ to reveal spatiotemporal patterns and relationships with rainfall and temperature. Of 23,766 abortions reported in all livestock species, sheep and goats contributed 77%, with goats alone contributing 53%. Seventy-seven per cent (n = 18,280) of these abortions occurred in arid and semi-arid lands (ASALs) that primarily practice pastoralism production systems. While spatiotemporal clustering of cases was observed in May-July 2019 in the ASALs, there was a substantial seasonal fluctuation across AEZs. Kenya experiences high livestock abortion rates, most of which go unreported. We recommend further research to document the national true burden of abortions. In ASALs, studies linking pathogen, climate, and environmental surveillance are needed to assign livestock abortions to infectious or non-infectious aetiologies and conducting human acute febrile illnesses surveillance to detect any links with the abortions.


Asunto(s)
Aborto Veterinario , Cabras , Ganado , Ovinos , Animales , Femenino , Embarazo , Kenia/epidemiología , Zoonosis/epidemiología , Aborto Veterinario/epidemiología , Aborto Veterinario/etiología
9.
BMJ Glob Health ; 9(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857944

RESUMEN

BACKGROUND: Recent epidemiology of Rift Valley fever (RVF) disease in Africa suggests growing frequency and expanding geographic range of small disease clusters in regions that previously had not reported the disease. We investigated factors associated with the phenomenon by characterising recent RVF disease events in East Africa. METHODS: Data on 100 disease events (2008-2022) from Kenya, Uganda and Tanzania were obtained from public databases and institutions, and modelled against possible geoecological risk factors of occurrence including altitude, soil type, rainfall/precipitation, temperature, normalised difference vegetation index (NDVI), livestock production system, land-use change and long-term climatic variations. Decadal climatic variations between 1980 and 2022 were evaluated for association with the changing disease pattern. RESULTS: Of 100 events, 91% were small RVF clusters with a median of one human (IQR, 1-3) and three livestock cases (IQR, 2-7). These clusters exhibited minimal human mortality (IQR, 0-1), and occurred primarily in highlands (67%), with 35% reported in areas that had never reported RVF disease. Multivariate regression analysis of geoecological variables showed a positive correlation between occurrence and increasing temperature and rainfall. A 1°C increase in temperature and a 1-unit increase in NDVI, one months prior were associated with increased RVF incidence rate ratios of 1.20 (95% CI 1.1, 1.2) and 1.93 (95% CI 1.01, 3.71), respectively. Long-term climatic trends showed a significant decadal increase in annual mean temperature (0.12-0.3°C/decade, p<0.05), associated with decreasing rainfall in arid and semi-arid lowlands but increasing rainfall trends in highlands (p<0.05). These hotter and wetter highlands showed increasing frequency of RVF clusters, accounting for 76% and 43% in Uganda and Kenya, respectively. CONCLUSION: These findings demonstrate the changing epidemiology of RVF disease. The widening geographic range of disease is associated with climatic variations, with the likely impact of wider dispersal of virus to new areas of endemicity and future epidemics.


Asunto(s)
Cambio Climático , Fiebre del Valle del Rift , Fiebre del Valle del Rift/epidemiología , Humanos , Animales , África Oriental/epidemiología , Ganado , Factores de Riesgo , Uganda/epidemiología , Análisis por Conglomerados , Brotes de Enfermedades , Kenia/epidemiología
10.
medRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798521

RESUMEN

Background: Recent epidemiology of Rift Valley fever (RVF) disease in Africa suggests growing frequency and expanding geographic range of small disease clusters in regions that previously had not reported the disease. We investigated factors associated with the phenomenon by characterizing recent RVF disease events in East Africa. Methods: Data on 100 disease events (2008 - 2022) from Kenya, Uganda, and Tanzania were obtained from public databases and institutions, and modeled against possible geo-ecological risk factors of occurrence including altitude, soil type, rainfall/precipitation, temperature, normalized difference vegetation index (NDVI), livestock production system, land-use change, and long-term climatic variations. Decadal climatic variations between 1980-2022 were evaluated for association with the changing disease pattern. Results: Of 100 events, 91% were small RVF clusters with a median of one human (IQR, 1-3) and 3 livestock cases (IQR, 2-7). These clusters exhibited minimal human mortality (IQR 0-1), and occurred primarily in highlands (67%), with 35% reported in areas that had never reported RVF disease. Multivariate regression analysis of geo-ecological variables showed a positive correlation between occurrence and increasing temperature and rainfall. A 1oC increase in temperature and 1-unit increase in NDVI, 1-3 months prior were associated with increased RVF incidence rate ratios (IRR) of 1.20 (95% CI 1.1,1.2) and 9.88 (95% CI 0.85, 119.52), respectively. Long-term climatic trends showed significant decadal increase in annual mean temperature (0.12 to 0.3oC/decade, P<0.05), associated with decreasing rainfall in arid and semi-arid lowlands but increasing rainfall trends in highlands (P<0.05). These hotter and wetter highlands showed increasing frequency of RVF clusters, accounting for 76% and 43% in Uganda and Kenya, respectively. Conclusion: These findings demonstrate the changing epidemiology of RVF disease. The widening geographic range of disease is associated with climatic variations, with the likely impact of wider dispersal of virus to new areas of endemicity and future epidemics. Key questions: What is already known on this topic?: Rift Valley fever is recognized for its association with heavy rainfall, flooding, and El Niño rains in the East African region. A growing body of recent studies has highlighted a shifting landscape of the disease, marked by an expanding geographic range and an increasing number of small RVF clusters.What this study adds: This study challenges previous beliefs about RVF, revealing that it predominantly occurs in small clusters rather than large outbreaks, and its association with El Niño is not as pronounced as previously thought. Over 65% of these clusters are concentrated in the highlands of Kenya and Uganda, with 35% occurring in previously unaffected regions, accompanied by an increase in temperature and total rainfall between 1980 and 2022, along with a rise in the annual number of rainy days. Notably, the observed rainfall increases are particularly significant during the short-rains season (October-December), aligning with a secondary peak in RVF incidence. In contrast, the lowlands of East Africa, where typical RVF epidemics occur, display smaller and more varied trends in annual rainfall.How this study might affect research, practice, or policy: The worldwide consequence of the expanding RVF cluster is the broader dispersion of the virus, leading to the establishment of new regions with virus endemicity. This escalation heightens the risk of more extensive extreme-weather-associated RVF epidemics in the future. Global public health institutions must persist in developing preparedness and response strategies for such scenarios. This involves the creation and approval of human RVF vaccines and therapeutics, coupled with a rapid distribution plan through regional banks.

11.
Vaccine X ; 19: 100507, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38873637

RESUMEN

Background: Influenza is a significant contributor to acute respiratory infections (ARI), and children < 5 years are at increased risk of severe influenza disease. In Kenya the influenza vaccine is not included in the Kenya Expanded Programme on Immunization (KEPI). To inform roll-out of a national influenza vaccination program, we implemented an influenza vaccine demonstration project in Nakuru and Mombasa counties in Kenya from 2019 to 2021 and set out to establish factors driving influenza vaccine acceptance and hesitancy among caregivers of children aged 6-23 months. Methods: Using semi-structured questionnaires, we conducted eight focus group discussions among community members and twelve key informant interviews among healthcare workers to elicit both lay and expert opinions. Thematic analysis of the interviews was conducted using the World Health Organization's "3 Cs" model of vaccine hesitancy to determine reasons for acceptance or hesitancy of the influenza vaccine. Results: The influenza vaccine was well received among community members and healthcare workers though concerns were raised. Vaccine hesitancy was fuelled by misconceptions about reasons for introducing the vaccine (confidence), perceptions that influenza was not a serious disease (complacency) and administrative fees required at some facilities (convenience). Despite the use of various advocacy, communication and social mobilisation strategies targeted at educating the community on the influenza disease and importance of vaccination, there remained a perception of inadequate reach of the sensitization among some community members. Contextual factors such as the COVID-19 pandemic affected uptake, and parents expressed concern over the growing number of vaccines recommended for children. Conclusion: Despite lingering concerns, caregivers had their children vaccinated indicating that vaccine hesitancy exists, even among those who accepted the vaccine for their children. Efforts targeted at increasing confidence in and reducing misconceptions towards vaccines through effective communication strategies, are likely to lead to increased vaccine uptake.

13.
Vaccine ; 41(52): 7695-7704, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38008664

RESUMEN

The recently emerged coronavirus disease 2019 (COVID-19) has caused considerable morbidity and mortality worldwide and disrupted health services. We describe the effect of the COVID-19 pandemic on utilization of childhood vaccination services during the pandemic. Using a mixed methods approach combining retrospective data review, a cross-sectional survey, focus group discussions among care givers and key informant interviews among nurses, we collected data between May and September 2021 in Mombasa and Nakuru counties. Overall, there was a <2 % decline in the number of vaccine doses administered during the pandemic period compared to the pre-pandemic period but this was statistically insignificant, both for the pentavalent-1 vaccine (ß = -0.013, p = 0.505) and the pentavalent-3 vaccine (ß = -0.012, p = 0.440). In government health facilities, there was 7.7 % reduction in the number of pentavalent-1 (ß = -0.08, p = 0.010) and 10.4 % reduction in the number of pentavalent-3 (ß = -0.11, p < 0.001) vaccine doses that were administered during the pandemic period. In non-government facilities, there was a 25.8 % increase in the number of pentavalent-1 (ß=0.23, p < 0.001) and 31.0 % increase in the number of pentavalent-3 (ß = -0.27, p < 0.001) vaccine doses that were administered facilities during the pandemic period. The strategies implemented to maintain immunization services during the pandemic period included providing messaging on the availability and importance of staying current with routine vaccination and conducting catch-up vaccinations and vaccination outreaches. Our findings suggest that the COVID-19 pandemic did not impact childhood vaccination services in Mombasa and Nakuru counties in Kenya. The private health facilities cushioned vaccination services against the effects of the pandemic and the strategies that were put in place by the ministry of health ensured continuation of vaccination services and encouraged uptake of the services during the pandemic period in the two counties in Kenya. These findings provide useful information to safeguard vaccination services during future pandemics.


Asunto(s)
COVID-19 , Resiliencia Psicológica , Vacunas , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , Kenia/epidemiología , Estudios Transversales , Estudios Retrospectivos , Vacunación , Inmunización , Vacunas Combinadas , Programas de Inmunización
14.
Vaccine ; 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38105140

RESUMEN

INTRODUCTION: In 2016, the Kenya National Immunization Technical Advisory Group requested additional programmatic and cost effectiveness data to inform the choice of strategy for a national influenza vaccination program among children aged 6-23 months of age. In response, we conducted an influenza vaccine demonstration project to compare the performance of a year-round versus campaign-mode vaccination strategy. Findings from this demonstration project will help identify essential learning lessons for a national program. METHODS: We compared two vaccine delivery strategies: (i) a year-round vaccination strategy where influenza vaccines were administered throughout the year at health facilities. This strategy was implemented in Njoro sub-county in Nakuru (November 2019 to October 2021) and Jomvu sub-county in Mombasa (December 2019 to October 2021), (ii) a campaign-mode vaccination strategy where vaccines were available at health facilities over four months. This strategy was implemented in Nakuru North sub-county in Nakuru (June to September 2021) and Likoni sub-county in Mombasa (July to October 2021). We assessed differences in coverage, dropout rates, vaccine wastage, and operational needs. RESULTS: We observed similar performance between strategies in coverage of the first dose of influenza vaccine (year-round strategy 59.7 %, campaign strategy 63.2 %). The coverage obtained in the year-round sub-counties was similar (Njoro 57.4 %; Jomvu 63.1 %); however, more marked differences between campaign sub-counties were observed (Nakuru North 73.4 %; Likoni 55.2 %). The campaign-mode strategy exceeded the cold chain capacity of participating health facilities, requiring thrice monthly instead of once monthly deliveries, and was associated with a two-fold increase in workload compared to the year-round strategy (168 vaccines administered per day in the campaign strategy versus 83 vaccines administered per day in the year-round strategy). CONCLUSION: Although both strategies had similar coverage levels, the campaign-mode strategy was associated with considerable operational needs that could significantly impact the immunization program.

15.
Vaccine ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38154992

RESUMEN

BACKGROUND: During November 2019-October 2021, a pediatric influenza vaccination demonstration project was conducted in four sub-counties in Kenya. The demonstration piloted two different delivery strategies: year-round vaccination and a four-month vaccination campaign. Our objective was to compare the costs of both delivery strategies. METHODS: Cost data were collected using standardized questionnaires and extracted from government and project accounting records. We reported total costs and costs per vaccine dose administered by delivery strategy from the Kenyan government perspective in 2021 US$. Costs were separated into financial costs (monetary expenditures) and economic costs (financial costs plus the value of existing resources). We also separated costs by administrative level (national, regional, county, sub-county, and health facility) and program activity (advocacy and social mobilization; training; distribution, storage, and waste management; service delivery; monitoring; and supervision). RESULTS: The total estimated cost of the pediatric influenza demonstration project was US$ 225,269 (financial) and US$ 326,691 (economic) for the year-round delivery strategy (30,397 vaccine doses administered), compared with US$ 214,753 (financial) and US$ 242,385 (economic) for the campaign strategy (25,404 doses administered). Vaccine purchase represented the largest proportion of costs for both strategies. Excluding vaccine purchase, the cost per dose administered was US$ 1.58 (financial) and US$ 5.84 (economic) for the year-round strategy and US$ 2.89 (financial) and US$ 4.56 (economic) for the campaign strategy. CONCLUSIONS: The financial cost per dose was 83% higher for the campaign strategy than the year-round strategy due to larger expenditures for advocacy and social mobilization, training, and hiring of surge staff for service delivery. However, the economic cost per dose was more comparable for both strategies (year-round 22% higher than campaign), balanced by higher costs of operating equipment and monitoring activities for the year-round strategy. These delivery cost data provide real-world evidence to inform pediatric influenza vaccine introduction in Kenya.

16.
Sci Rep ; 12(1): 21670, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522381

RESUMEN

Using data collected from previous (n = 86) and prospective (n = 132) anthrax outbreaks, we enhanced prior ecological niche models (ENM) and added kernel density estimation (KDE) approaches to identify anthrax hotspots in Kenya. Local indicators of spatial autocorrelation (LISA) identified clusters of administrative wards with a relatively high or low anthrax reporting rate to determine areas of greatest outbreak intensity. Subsequently, we modeled the impact of vaccinating livestock in the identified hotspots as a national control measure. Anthrax suitable areas included high agriculture zones concentrated in the western, southwestern and central highland regions, consisting of 1043 of 1450 administrative wards, covering 18.5% country landmass, and hosting 30% of the approximately 13 million cattle population in the country. Of these, 79 wards covering 5.5% landmass and hosting 9% of the cattle population fell in identified anthrax hotspots. The rest of the 407 administrative wards covering 81.5% of the country landmass, were classified as low anthrax risk areas and consisted of the expansive low agricultural arid and semi-arid regions of the country that hosted 70% of the cattle population, reared under the nomadic pastoralism. Modelling targeted annual vaccination of 90% cattle population in hotspot administrative wards reduced > 23,000 human exposures. These findings support an economically viable first phase of anthrax control program in low-income countries where the disease is endemic, that is focused on enhanced animal and human surveillance in burden hotspots, followed by rapid response to outbreaks anchored on public education, detection and treatment of infected humans, and ring vaccination of livestock. Subsequently, the global anthrax elimination program focused on sustained vaccination and surveillance in livestock in the remaining few hotspots for a prolonged period (> 10 years) may be implemented.


Asunto(s)
Carbunco , Bacillus anthracis , Animales , Bovinos , Humanos , Carbunco/epidemiología , Carbunco/prevención & control , Carbunco/veterinaria , Kenia/epidemiología , Bacillus anthracis/fisiología , Estudios Prospectivos , Factores de Riesgo , Ganado , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/veterinaria
17.
Vaccines (Basel) ; 11(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36679913

RESUMEN

Considering the early inequity in global COVID-19 vaccine distribution, we compared the level of population immunity to SARS-CoV-2 with vaccine uptake and refusal between rural and urban Kenya two years after the pandemic onset. A population-based seroprevalence study was conducted in the city of Nairobi (n = 781) and a rural western county (n = 810) between January and February 2022. The overall SARS-CoV-2 seroprevalence was 90.2% (95% CI, 88.6−91.2%), including 96.7% (95% CI, 95.2−97.9%) among urban and 83.6% (95% CI, 80.6−86.0%) among rural populations. A comparison of immunity profiles showed that >50% of the rural population were strongly immunoreactive compared to <20% of the urban population, suggesting more recent infections or vaccinations in the rural population. More than 45% of the vaccine-eligible (≥18 years old) persons had not taken a single dose of the vaccine (hesitancy), including 47.6% and 46.9% of urban and rural participants, respectively. Vaccine refusal was reported in 19.6% of urban and 15.6% of rural participants, attributed to concern about vaccine safety (>75%), inadequate information (26%), and concern about vaccine effectiveness (9%). Less than 2% of vaccine refusers cited religious or cultural beliefs. These findings indicate that despite vaccine inequity, hesitancy, and refusal, herd immunity had been achieved in Kenya and likely other African countries by early 2022, with natural infections likely contributing to most of this immunity. However, vaccine campaigns should be sustained due to the need for repeat boosters associated with waning of SARS-CoV-2 immunity and emergence of immune-evading virus variants.

18.
medRxiv ; 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35262086

RESUMEN

Background: Using classical and genomic epidemiology, we tracked the COVID-19 pandemic in Kenya over 23 months to determine the impact of SARS-CoV-2 variants on its progression. Methods: SARS-CoV-2 surveillance and testing data were obtained from the Kenya Ministry of Health, collected daily from 306 health facilities. COVID-19-associated fatality data were also obtained from these health facilities and communities. Whole SARS-CoV-2 genome sequencing were carried out on 1241 specimens. Results: Over the pandemic duration (March 2020 - January 2022) Kenya experienced five waves characterized by attack rates (AR) of between 65.4 and 137.6 per 100,000 persons, and intra-wave case fatality ratios (CFR) averaging 3.5%, two-fold higher than the national average COVID-19 associated CFR. The first two waves that occurred before emergence of global variants of concerns (VoC) had lower AR (65.4 and 118.2 per 100,000). Waves 3, 4, and 5 that occurred during the second year were each dominated by multiple introductions each, of Alpha (74.9% genomes), Delta (98.7%), and Omicron (87.8%) VoCs, respectively. During this phase, government-imposed restrictions failed to alleviate pandemic progression, resulting in higher attack rates spread across the country. Conclusions: The emergence of Alpha, Delta, and Omicron variants was a turning point that resulted in widespread and higher SARS-CoV-2 infections across the country.

19.
Viruses ; 14(8)2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-36016365

RESUMEN

The majority of Kenya's > 3 million camels have antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV), although human infection in Africa is rare. We enrolled 243 camels aged 0−24 months from 33 homesteads in Northern Kenya and followed them between April 2018 to March 2020. We collected and tested camel nasal swabs for MERS-CoV RNA by RT-PCR followed by virus isolation and whole genome sequencing of positive samples. We also documented illnesses (respiratory or other) among the camels. Human camel handlers were also swabbed, screened for respiratory signs, and samples were tested for MERS-CoV by RT-PCR. We recorded 68 illnesses among 58 camels, of which 76.5% (52/68) were respiratory signs and the majority of illnesses (73.5% or 50/68) were recorded in 2019. Overall, 124/4692 (2.6%) camel swabs collected from 83 (34.2%) calves in 15 (45.5%) homesteads between April−September 2019 screened positive, while 22 calves (26.5%) recorded reinfections (second positive swab following ≥ 2 consecutive negative tests). Sequencing revealed a distinct Clade C2 virus that lacked the signature ORF4b deletions of other Clade C viruses. Three previously reported human PCR positive cases clustered with the camel infections in time and place, strongly suggesting sporadic transmission to humans during intense camel outbreaks in Northern Kenya.


Asunto(s)
Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Anticuerpos Antivirales , Camelus , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Brotes de Enfermedades , Humanos , Kenia/epidemiología , Zoonosis
20.
F1000Res ; 10: 853, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35528961

RESUMEN

Introduction: Urban informal settlements may be disproportionately affected by the COVID-19 pandemic due to overcrowding and other socioeconomic challenges that make adoption and implementation of public health mitigation measures difficult. We conducted a seroprevalence survey in the Kibera informal settlement, Nairobi, Kenya, to determine the extent of SARS-CoV-2 infection. Methods: Members of randomly selected households from an existing population-based infectious disease surveillance (PBIDS) provided blood specimens between 27 th November and 5 th December 2020. The specimens were tested for antibodies to the SARS-CoV-2 spike protein. Seroprevalence estimates were weighted by age and sex distribution of the PBIDS population and accounted for household clustering. Multivariable logistic regression was used to identify risk factors for individual seropositivity.   Results: Consent was obtained from 523 individuals in 175 households, yielding 511 serum specimens that were tested. The overall weighted seroprevalence was 43.3% (95% CI, 37.4 - 49.5%) and did not vary by sex. Of the sampled households, 122(69.7%) had at least one seropositive individual. The individual seroprevalence increased by age from 7.6% (95% CI, 2.4 - 21.3%) among children (<5 years), 32.7% (95% CI, 22.9 - 44.4%) among children 5 - 9 years, 41.8% (95% CI, 33.0 - 51.1%) for those 10-19 years, and 54.9%(46.2 - 63.3%) for adults (≥20 years). Relative to those from medium-sized households (3 and 4 individuals), participants from large (≥5 persons) households had significantly increased odds of being seropositive, aOR, 1.98(95% CI, 1.17 - 1.58), while those from small-sized households (≤2 individuals) had increased odds but not statistically significant, aOR, 2.31 (95% CI, 0.93 - 5.74).  Conclusion: In densely populated urban settings, close to half of the individuals had an infection to SARS-CoV-2 after eight months of the COVID-19 pandemic in Kenya. This highlights the importance to prioritize mitigation measures, including COVID-19 vaccine distribution, in the crowded, low socioeconomic settings.


Asunto(s)
COVID-19 , Adulto , Anticuerpos Antivirales , COVID-19/epidemiología , Vacunas contra la COVID-19 , Niño , Preescolar , Humanos , Kenia/epidemiología , Pandemias , Factores de Riesgo , SARS-CoV-2 , Estudios Seroepidemiológicos , Glicoproteína de la Espiga del Coronavirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA