Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(17): 171403, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37172245

RESUMEN

We combine amortized neural posterior estimation with importance sampling for fast and accurate gravitational-wave inference. We first generate a rapid proposal for the Bayesian posterior using neural networks, and then attach importance weights based on the underlying likelihood and prior. This provides (1) a corrected posterior free from network inaccuracies, (2) a performance diagnostic (the sample efficiency) for assessing the proposal and identifying failure cases, and (3) an unbiased estimate of the Bayesian evidence. By establishing this independent verification and correction mechanism we address some of the most frequent criticisms against deep learning for scientific inference. We carry out a large study analyzing 42 binary black hole mergers observed by LIGO and Virgo with the SEOBNRv4PHM and IMRPhenomXPHM waveform models. This shows a median sample efficiency of ≈10% (2 orders of magnitude better than standard samplers) as well as a tenfold reduction in the statistical uncertainty in the log evidence. Given these advantages, we expect a significant impact on gravitational-wave inference, and for this approach to serve as a paradigm for harnessing deep learning methods in scientific applications.

2.
Phys Rev Lett ; 127(24): 241103, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34951790

RESUMEN

We demonstrate unprecedented accuracy for rapid gravitational wave parameter estimation with deep learning. Using neural networks as surrogates for Bayesian posterior distributions, we analyze eight gravitational wave events from the first LIGO-Virgo Gravitational-Wave Transient Catalog and find very close quantitative agreement with standard inference codes, but with inference times reduced from O(day) to 20 s per event. Our networks are trained using simulated data, including an estimate of the detector noise characteristics near the event. This encodes the signal and noise models within millions of neural-network parameters and enables inference for any observed data consistent with the training distribution, accounting for noise nonstationarity from event to event. Our algorithm-called "DINGO"-sets a new standard in fast and accurate inference of physical parameters of detected gravitational wave events, which should enable real-time data analysis without sacrificing accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA