Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 117(5): 1432-1452, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38044809

RESUMEN

Cells save their energy during nitrogen starvation by selective autophagy of ribosomes and degradation of RNA to ribonucleotides and nucleosides. Nucleosides are hydrolyzed by nucleoside N-ribohydrolases (nucleosidases, NRHs). Subclass I of NRHs preferentially hydrolyzes the purine ribosides while subclass II is more active towards uridine and xanthosine. Here, we performed a crystallographic and kinetic study to shed light on nucleoside preferences among plant NRHs followed by in vivo metabolomic and phenotyping analyses to reveal the consequences of enhanced nucleoside breakdown. We report the crystal structure of Zea mays NRH2b (subclass II) and NRH3 (subclass I) in complexes with the substrate analog forodesine. Purine and pyrimidine catabolism are inseparable because nucleobase binding in the active site of ZmNRH is mediated via a water network and is thus unspecific. Dexamethasone-inducible ZmNRH overexpressor lines of Arabidopsis thaliana, as well as double nrh knockout lines of moss Physcomitrium patents, reveal a fine control of adenosine in contrast to other ribosides. ZmNRH overexpressor lines display an accelerated early vegetative phase including faster root and rosette growth upon nitrogen starvation or osmotic stress. Moreover, the lines enter the bolting and flowering phase much earlier. We observe changes in the pathways related to nitrogen-containing compounds such as ß-alanine and several polyamines, which allow plants to reprogram their metabolism to escape stress. Taken together, crop plant breeding targeting enhanced NRH-mediated nitrogen recycling could therefore be a strategy to enhance plant growth tolerance and productivity under adverse growth conditions.


Asunto(s)
Arabidopsis , Nucleósidos , Nucleósidos/metabolismo , Nitrógeno/metabolismo , Fitomejoramiento , Plantas/metabolismo , Uridina/metabolismo , Arabidopsis/genética
2.
Plant J ; 114(3): 482-498, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36786691

RESUMEN

Polyamines such as spermidine and spermine are essential regulators of cell growth, differentiation, maintenance of ion balance and abiotic stress tolerance. Their levels are controlled by the spermidine/spermine N1 -acetyltransferase (SSAT) via acetylation to promote either their degradation or export outside the cell as shown in mammals. Plant genomes contain at least one gene coding for SSAT (also named NATA for N-AcetylTransferase Activity). Combining kinetics, HPLC-MS and crystallography, we show that three plant SSATs, one from the lower plant moss Physcomitrium patens and two from the higher plant Zea mays, acetylate various aliphatic polyamines and two amino acids lysine (Lys) and ornithine (Orn). Thus, plant SSATs exhibit a broad substrate specificity, unlike more specific human SSATs (hSSATs) as hSSAT1 targets polyamines, whereas hSSAT2 acetylates Lys and thiaLys. The crystal structures of two PpSSAT ternary complexes, one with Lys and CoA, the other with acetyl-CoA and polyethylene glycol (mimicking spermine), reveal a different binding mode for polyamine versus amino acid substrates accompanied by structural rearrangements of both the coenzyme and the enzyme. Two arginine residues, unique among plant SSATs, hold the carboxyl group of amino acid substrates. The most abundant acetylated compound accumulated in moss was N6 -acetyl-Lys, whereas N5 -acetyl-Orn, known to be toxic for aphids, was found in maize. Both plant species contain very low levels of acetylated polyamines. The present study provides a detailed biochemical and structural basis of plant SSAT enzymes that can acetylate a wide range of substrates and likely play various roles in planta.


Asunto(s)
Poliaminas , Espermidina , Animales , Humanos , Poliaminas/metabolismo , Espermina/metabolismo , Zea mays/metabolismo , Lisina/metabolismo , Ornitina/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Catálisis , Mamíferos/metabolismo
3.
J Exp Bot ; 75(7): 2156-2175, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38207009

RESUMEN

Co-occurring heat and drought stresses challenge crop performance. Stomata open to promote evaporative cooling during heat stress, but close to retain water during drought stress, which resulted in complex stomatal regulation under combined heat and drought. We aimed to investigate stomatal regulation in leaves and flowers of perennial, indeterminate cultivars of tomatoes subjected to individual and combined heat and drought stress followed by a recovery period, measuring morphological, physiological, and biochemical factors involved in stomatal regulation. Under stress, stomata of leaves were predominantly affected by drought, with lower stomatal density and stomatal closing, resulting in significantly decreased photosynthesis and higher leaf temperature. Conversely, stomata in sepals seemed affected mainly by heat during stress. The differential patterns in stomatal regulation in leaves and flowers persisted into the recovery phase as contrasting patterns in stomatal density. We show that flower transpiration is regulated by temperature, but leaf transpiration is regulated by soil water availability during stress. Organ-specific patterns of stomatal development and abscisic acid metabolism mediated this phenomenon. Our results throw light on the dual role of stomata in heat and drought tolerance of vegetative and generative organs, and demonstrate the importance of considering flower surfaces in the phenotyping of stomatal reactions to stress.


Asunto(s)
Solanum lycopersicum , Estomas de Plantas/fisiología , Sequías , Ácido Abscísico/metabolismo , Hojas de la Planta/metabolismo , Agua/metabolismo , Flores/metabolismo
4.
J Exp Bot ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526483

RESUMEN

We have developed and validated a novel LC-MS/MS method for simultaneously analyzing amino acids, biogenic amines, and their acetylated and methylated derivatives in plants. This method involves a one-step extraction of 2-5 mg of lyophilized plant material followed by fractionation of different biogenic amine forms and exploits an efficient combination of hydrophilic interaction chromatography (HILIC), reversed phase (RP) chromatography with pre-column derivatization, and tandem mass spectrometry. This approach enables high-throughput processing of plant samples, significantly reducing the time needed for analysis and its cost. We also present a new synthetic route for deuterium-labelled polyamines. The LC-MS/MS method was rigorously validated by quantifying levels of nitrogen-related metabolites in seedlings of seven plant species including Arabidopsis, maize, and barley, all of which are commonly used model organisms in plant science research. Our results revealed substantial variations in the abundance of these metabolites between species, developmental stages, and growth conditions, particularly for the acetylated and methylated derivatives and the various polyamine fractions. However, the biological relevance of these plant metabolites is currently unclear. Overall, this work contributes significantly to the field of plant science by providing a powerful analytical tool and setting the stage for future investigations into the functions of these nitrogen-related metabolites in plants.

5.
J Exp Bot ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776394

RESUMEN

Cytokinin oxidase/dehydrogenase (CKX) inhibitors reduce the degradation of cytokinins in plants and thereby may improve the efficiency of agriculture and plant tissue culture-based practices. Here, we report a synthesis and structure-activity relationship study of novel urea derivatives concerning their CKX inhibitory activity. The best compounds showed sub-nanomolar IC50 values with maize ZmCKX1, the lowest value yet documented. Other CKX isoforms of maize (Zea mays) and Arabidopsis were also inhibited very effectively. The binding mode of four compounds was characterized based on high-resolution crystal complex structures. Using the soil nematode Caenorhabditis elegans, and human skin fibroblasts, key CKX inhibitors with low toxicity were identified. These compounds enhanced the shoot regeneration of Lobelia, Drosera, and Plectranthus, as well as the growth of Arabidopsis and Brassica napus. At the same time, a key compound (namely 82), activated a cytokinin primary response gene ARR5:GUS and cytokinin sensor TCSv2:GUS, without activating the Arabidopsis cytokinin receptors AHK3 and AHK4. This strongly implies that the effect of compound 82 is due to the upregulation of cytokinin signalling. Overall, this work presents highly effective and easily prepared CKX inhibitors with a low risk of environmental toxicity for further investigation of their potential in agriculture and biotechnology.

6.
Plant Physiol ; 190(4): 2137-2154, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36111879

RESUMEN

In Arabidopsis (Arabidopsis thaliana), the plastidial isoform of phosphoglucose isomerase (PGI1) mediates photosynthesis, metabolism, and development, probably due to its involvement in the synthesis of isoprenoid-derived signals in vascular tissues. Microbial volatile compounds (VCs) with molecular masses of <45 Da promote photosynthesis, growth, and starch overaccumulation in leaves through PGI1-independent mechanisms. Exposure to these compounds in leaves enhances the levels of GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR2 (GPT2) transcripts. We hypothesized that the PGI1-independent response to microbial volatile emissions involves GPT2 action. To test this hypothesis, we characterized the responses of wild-type (WT), GPT2-null gpt2-1, PGI1-null pgi1-2, and pgi1-2gpt2-1 plants to small fungal VCs. In addition, we characterized the responses of pgi1-2gpt2-1 plants expressing GPT2 under the control of a vascular tissue- and root tip-specific promoter to small fungal VCs. Fungal VCs promoted increases in growth, starch content, and photosynthesis in WT and gpt2-1 plants. These changes were substantially weaker in VC-exposed pgi1-2gpt2-1 plants but reverted to WT levels with vascular and root tip-specific GPT2 expression. Proteomic analyses did not detect enhanced levels of GPT2 protein in VC-exposed leaves and showed that knocking out GPT2 reduced the expression of photosynthesis-related proteins in pgi1-2 plants. Histochemical analyses of GUS activity in plants expressing GPT2-GUS under the control of the GPT2 promoter showed that GPT2 is mainly expressed in root tips and vascular tissues around hydathodes. Overall, the data indicated that the PGI1-independent response to microbial VCs involves resetting of the photosynthesis-related proteome in leaves through long-distance GPT2 action.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosa-6-Fosfato/metabolismo , Proteómica , Arabidopsis/metabolismo , Glucosa-6-Fosfato Isomerasa/metabolismo , Almidón/metabolismo , Glucosa/metabolismo , Fosfatos/metabolismo
7.
Plant J ; 106(5): 1338-1355, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33738886

RESUMEN

Drought stress impacts the quality and yield of Pisum sativum. Here, we show how short periods of limited water availability during the vegetative stage of pea alters phloem sap content and how these changes are connected to strategies used by plants to cope with water deficit. We have investigated the metabolic content of phloem sap exudates and explored how this reflects P. sativum physiological and developmental responses to drought. Our data show that drought is accompanied by phloem-mediated redirection of the components that are necessary for cellular respiration and the proper maintenance of carbon/nitrogen balance during stress. The metabolic content of phloem sap reveals a shift from anabolic to catabolic processes as well as the developmental plasticity of P. sativum plants subjected to drought. Our study underlines the importance of phloem-mediated transport for plant adaptation to unfavourable environmental conditions. We also show that phloem exudate analysis can be used as a useful proxy to study stress responses in plants. We propose that the decrease in oleic acid content within phloem sap could be considered as a potential marker of early signalling events mediating drought response.


Asunto(s)
Carbono/metabolismo , Nitrógeno/metabolismo , Pisum sativum/fisiología , Adaptación Fisiológica , Transporte Biológico , Sequías , Genotipo , Ácido Oléico/metabolismo , Pisum sativum/anatomía & histología , Pisum sativum/genética , Floema/anatomía & histología , Floema/genética , Floema/fisiología , Exudados de Plantas , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Estrés Fisiológico , Agua/fisiología
8.
J Exp Bot ; 73(15): 5199-5212, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-35770872

RESUMEN

Commercial interest in biostimulants as a tool for sustainable green economics and agriculture concepts is on a steep rise, being followed by increasing demand to employ efficient scientific methods to develop new products and understand their mechanisms of action. Biostimulants represent a highly diverse group of agents derived from various natural sources. Regardless of their nutrition content and composition, they are classified by their ability to improve crop performance through enhanced nutrient use efficiency, abiotic stress tolerance, and quality of crops. Numerous reports have described modern, non-invasive sensor-based phenotyping methods in plant research. This review focuses on applying phenotyping approaches in biostimulant research and development, and maps the evolution of interaction of these two intensively growing domains. How phenotyping served to identify new biostimulants, the description of their biological activity, and the mechanism/mode of action are summarized. Special attention is dedicated to the indoor high-throughput methods using model plants suitable for biostimulant screening and developmental pipelines, and high-precision approaches used to determine biostimulant activity. The need for a complex method of testing biostimulants as multicomponent products through integrating other -omic approaches followed by advanced statistical/mathematical tools is emphasized.


Asunto(s)
Productos Agrícolas , Estrés Fisiológico , Agricultura/métodos , Investigación
9.
J Exp Bot ; 72(2): 355-370, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-32945834

RESUMEN

Increasing crop productivity is our major challenge if we are to meet global needs for food, fodder and fuel. Controlling the content of the plant hormone cytokinin is a method of improving plant productivity. Cytokinin oxidase/dehydrogenase (CKO/CKX) is a major target in this regard because it degrades cytokinins. Here, we describe the synthesis and biological activities of new CKX inhibitors derived mainly from diphenylurea. They were tested on four CKX isoforms from maize and Arabidopsis, where the best compounds showed IC50 values in the 10-8 M concentration range. The binding mode of the most efficient inhibitors was characterized from high-resolution crystal complexed structures. Although these compounds do not possess intrinsic cytokinin activity, we have demonstrated their tremendous potential for use in the plant tissue culture industry as well as in agriculture. We have identified a key substance, compound 19, which not only increases stress resistance and seed yield in Arabidopsis, but also improves the yield of wheat, barley and rapeseed grains under field conditions. Our findings reveal that modulation of cytokinin levels via CKX inhibition can positively affect plant growth, development and yield, and prove that CKX inhibitors can be an attractive target in plant biotechnology and agriculture.


Asunto(s)
Arabidopsis , Oxidorreductasas , Biotecnología , Citocininas
10.
Plant Cell ; 30(9): 2082-2098, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30099384

RESUMEN

The plastid-localized phosphoglucose isomerase isoform PGI1 is an important determinant of growth in Arabidopsis thaliana, likely due to its involvement in the biosynthesis of plastidial isoprenoid-derived hormones. Here, we investigated whether PGI1 also influences seed yields. PGI1 is strongly expressed in maturing seed embryos and vascular tissues. PGI1-null pgi1-2 plants had ∼60% lower seed yields than wild-type plants, with reduced numbers of inflorescences and thus fewer siliques and seeds per plant. These traits were associated with low bioactive gibberellin (GA) contents. Accordingly, wild-type phenotypes were restored by exogenous GA application. pgi1-2 seeds were lighter and accumulated ∼50% less fatty acids (FAs) and ∼35% less protein than wild-type seeds. Seeds of cytokinin-deficient plants overexpressing CYTOKININ OXIDASE/DEHYDROGENASE1 (35S:AtCKX1) and GA-deficient ga20ox1 ga20ox2 mutants did not accumulate low levels of FAs, and exogenous application of the cytokinin 6-benzylaminopurine and GAs did not rescue the reduced weight and FA content of pgi1-2 seeds. Seeds from reciprocal crosses between pgi1-2 and wild-type plants accumulated wild-type levels of FAs and proteins. Therefore, PGI1 is an important determinant of Arabidopsis seed yield due to its involvement in two processes: GA-mediated reproductive development and the metabolic conversion of plastidial glucose-6-phosphate to storage reserves in the embryo.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Giberelinas/metabolismo , Glucosa-6-Fosfato Isomerasa/metabolismo , Plastidios/metabolismo , Semillas/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Glucosa-6-Fosfato/metabolismo , Glucosa-6-Fosfato Isomerasa/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Semillas/enzimología
11.
Plant Cell Environ ; 43(10): 2551-2570, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32515071

RESUMEN

Volatile compounds (VCs) emitted by the fungal phytopathogen Penicillium aurantiogriseum promote root growth and developmental changes in Arabidopsis. Here we characterised the metabolic and molecular responses of roots to fungal volatiles. Proteomic analyses revealed that these compounds reduce the levels of aquaporins, the iron carrier IRT1 and apoplastic peroxidases. Fungal VCs also increased the levels of enzymes involved in the production of mevalonate (MVA)-derived isoprenoids, nitrogen assimilation and conversion of methionine to ethylene and cyanide. Consistently, fungal VC-treated roots accumulated high levels of hydrogen peroxide (H2 O2 ), MVA-derived cytokinins, ethylene, cyanide and long-distance nitrogen transport amino acids. qRT-PCR analyses showed that many proteins differentially expressed by fungal VCs are encoded by VC non-responsive genes. Expression patterns of hormone reporters and developmental characterisation of mutants provided evidence for the involvement of cyanide scavenging and enhanced auxin, ethylene, cytokinin and H2 O2 signalling in the root architecture changes promoted by fungal VCs. Our findings show that VCs from P. aurantiogriseum modify root metabolism and architecture, and improve nutrient and water use efficiencies through transcriptionally and non-transcriptionally regulated proteome resetting mechanisms. Some of these mechanisms are subject to long-distance regulation by photosynthesis and differ from those triggered by VCs emitted by beneficial microorganisms.


Asunto(s)
Arabidopsis/microbiología , Penicillium/metabolismo , Enfermedades de las Plantas/microbiología , Raíces de Plantas/metabolismo , Proteoma/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Penicillium/fisiología , Fotosíntesis , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Proteoma/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Plant Cell Environ ; 42(9): 2627-2644, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31222760

RESUMEN

Microorganisms produce volatile compounds (VCs) that promote plant growth and photosynthesis through complex mechanisms involving cytokinin (CK) and abscisic acid (ABA). We hypothesized that plants' responses to microbial VCs involve posttranslational modifications of the thiol redox proteome through action of plastidial NADPH-dependent thioredoxin reductase C (NTRC), which regulates chloroplast redox status via its functional relationship with 2-Cys peroxiredoxins. To test this hypothesis, we analysed developmental, metabolic, hormonal, genetic, and redox proteomic responses of wild-type (WT) plants and a NTRC knockout mutant (ntrc) to VCs emitted by the phytopathogen Alternaria alternata. Fungal VC-promoted growth, changes in root architecture, shifts in expression of VC-responsive CK- and ABA-regulated genes, and increases in photosynthetic capacity were substantially weaker in ntrc plants than in WT plants. As in WT plants, fungal VCs strongly promoted growth, chlorophyll accumulation, and photosynthesis in ntrc-Δ2cp plants with reduced 2-Cys peroxiredoxin expression. OxiTRAQ-based quantitative and site-specific redox proteomic analyses revealed that VCs promote global reduction of the thiol redox proteome (especially of photosynthesis-related proteins) of WT leaves but its oxidation in ntrc leaves. Our findings show that NTRC is an important mediator of plant responses to microbial VCs through mechanisms involving global thiol redox proteome changes that affect photosynthesis.


Asunto(s)
Alternaria , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Compuestos Orgánicos Volátiles/farmacología , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Fotosíntesis/efectos de los fármacos , Proteoma
13.
Plant Physiol ; 172(3): 1989-2001, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27663407

RESUMEN

Volatile compounds (VCs) emitted by phylogenetically diverse microorganisms (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote photosynthesis, growth, and the accumulation of high levels of starch in leaves through cytokinin (CK)-regulated processes. In Arabidopsis (Arabidopsis thaliana) plants not exposed to VCs, plastidic phosphoglucose isomerase (pPGI) acts as an important determinant of photosynthesis and growth, likely as a consequence of its involvement in the synthesis of plastidic CKs in roots. Moreover, this enzyme plays an important role in connecting the Calvin-Benson cycle with the starch biosynthetic pathway in leaves. To elucidate the mechanisms involved in the responses of plants to microbial VCs and to investigate the extent of pPGI involvement, we characterized pPGI-null pgi1-2 Arabidopsis plants cultured in the presence or absence of VCs emitted by Alternaria alternata We found that volatile emissions from this fungal phytopathogen promote growth, photosynthesis, and the accumulation of plastidic CKs in pgi1-2 leaves. Notably, the mesophyll cells of pgi1-2 leaves accumulated exceptionally high levels of starch following VC exposure. Proteomic analyses revealed that VCs promote global changes in the expression of proteins involved in photosynthesis, starch metabolism, and growth that can account for the observed responses in pgi1-2 plants. The overall data show that Arabidopsis plants can respond to VCs emitted by phytopathogenic microorganisms by triggering pPGI-independent mechanisms.


Asunto(s)
Alternaria/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/microbiología , Glucosa-6-Fosfato Isomerasa/metabolismo , Plastidios/enzimología , Compuestos Orgánicos Volátiles/farmacología , Alternaria/efectos de la radiación , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Pared Celular/metabolismo , Pared Celular/efectos de la radiación , Citocininas/metabolismo , Luz , Células del Mesófilo/efectos de los fármacos , Células del Mesófilo/metabolismo , Células del Mesófilo/efectos de la radiación , Mutación/genética , Fotosíntesis/efectos de la radiación , Plastidios/efectos de los fármacos , Proteoma/metabolismo , Almidón/metabolismo
14.
Plant Cell Environ ; 39(12): 2592-2608, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27092473

RESUMEN

It is known that volatile emissions from some beneficial rhizosphere microorganisms promote plant growth. Here we show that volatile compounds (VCs) emitted by phylogenetically diverse rhizosphere and non-rhizhosphere bacteria and fungi (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote growth and flowering of various plant species, including crops. In Arabidopsis plants exposed to VCs emitted by the phytopathogen Alternaria alternata, changes included enhancement of photosynthesis and accumulation of high levels of cytokinins (CKs) and sugars. Evidence obtained using transgenic Arabidopsis plants with altered CK status show that CKs play essential roles in this phenomenon, because growth and flowering responses to the VCs were reduced in mutants with CK-deficiency (35S:AtCKX1) or low receptor sensitivity (ahk2/3). Further, we demonstrate that the plant responses to fungal VCs are light-dependent. Transcriptomic analyses of Arabidopsis leaves exposed to A. alternata VCs revealed changes in the expression of light- and CK-responsive genes involved in photosynthesis, growth and flowering. Notably, many genes differentially expressed in plants treated with fungal VCs were also differentially expressed in plants exposed to VCs emitted by the plant growth promoting rhizobacterium Bacillus subtilis GB03, suggesting that plants react to microbial VCs through highly conserved regulatory mechanisms.


Asunto(s)
Citocininas/fisiología , Flores/crecimiento & desarrollo , Desarrollo de la Planta/fisiología , Plantas/microbiología , Compuestos Orgánicos Volátiles/metabolismo , Alternaria/fisiología , Arabidopsis/microbiología , Arabidopsis/fisiología , Flores/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Fotosíntesis/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Rizosfera , Transcriptoma/fisiología
15.
Bioorg Med Chem ; 24(3): 484-92, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26719210

RESUMEN

Plant hormones cytokinins regulate various aspects of plant growth and development. For their positive effects on branching, delaying of senescence, nutrient remobilisation, flower and seed set control they became interesting substances in search for potential agrochemicals. From the 1970' of the last century exogenous application of cytokinins have been tested in field conditions to improve yield traits of world-wide important crops such as wheat, rice, maize, barley, and soybean. Despite the extensive testing summarized in this work, so far cytokinins haven't found their stable place among commercialized plant growth regulators, mainly due to the complexity of their effects. Here we bring an overview of the outcomes obtained in pot and field experiments using cytokinin exogenous treatments, summarize the ways of application and point to the affected traits in various field crops, vegetables, cotton and fruit trees. Further, we present here outcomes of field trials performed with a derivative of N(6)-benzyladenine, 2-chloro-6-(3-methoxybenzyl)aminopurine, in spring barley and winter wheat. The effect on yield forming traits such as number of tillers, grains per ear, number of ears and the final yield was evaluated and compared after spraying of the both crops in different phenological stages.


Asunto(s)
Agroquímicos/farmacología , Citocininas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Plantas/efectos de los fármacos , Plantas/metabolismo
16.
Mar Drugs ; 12(12): 5944-59, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25501796

RESUMEN

Gamma tocopherol (gT) exhibits beneficial cardiovascular effects partly due to its anti-inflammatory activity. Important sources of gT are vegetable oils. However, little is known to what extent gT can be transferred into marine animal species such as Atlantic salmon by feeding. Therefore, in this study we have investigated the transfer of dietary gT into salmon. To this end, fish were fed a diet supplemented with 170 ppm gT for 16 weeks whereby alpha tocopherol levels were adjusted to 190 ppm in this and the control diet. Feeding gT-rich diets resulted in a three-fold increase in gT concentrations in the liver and fillet compared to non-gT-supplemented controls. Tissue alpha tocopherol levels were not decreased indicating no antagonistic interaction between gamma- and alpha tocopherol in salmon. The concentration of total omega 3 fatty acids slightly increased in response to dietary gT. Furthermore, dietary gT significantly decreased malondialdehyde in the fillet, determined as a biomarker of lipid peroxidation. In the liver of gT fed salmon we observed an overall down-regulation of genes involved in lipid homeostasis. Additionally, gT improved the antioxidant capacity by up-regulating Gpx4a gene expression in the pyloric caeca. We suggest that Atlantic salmon may provide a marine functional source capable of enriching gT for human consumption.


Asunto(s)
Salmo salar/metabolismo , gamma-Tocoferol/metabolismo , Alimentación Animal , Animales , Dieta/métodos , Suplementos Dietéticos , Regulación hacia Abajo/fisiología , Ácidos Grasos Omega-3/metabolismo , Peroxidación de Lípido/genética , Lípidos/genética , Hígado , Malondialdehído/metabolismo , alfa-Tocoferol/metabolismo
17.
Plant Physiol Biochem ; 208: 108458, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38408395

RESUMEN

This study investigated the effect of light intensity and signaling on the regulation of far-red (FR)-induced alteration in photosynthesis. The low (LL: 440 µmol m-2 s-1) and high (HL: 1135 µmol m-2 s-1) intensity of white light with or without FR (LLFR: 545 µmol m-2 s-1 including 115 µmol m-2 s-1; HLFR: 1254 µmol m-2 s-1 + 140 µmol m-2 s-1) was applied on the tomato cultivar (Solanum Lycopersicon cv. Moneymaker) and mutants of phytochrome A (phyA) and phytochrome B (phyB1, and phyB2). Both light intensity and FR affected plant morphological traits, leaf biomass, and flowering time. Irrespective of genotype, flowering was delayed by LLFR and accelerated by HLFR compared to the corresponding light intensity without FR. In LLFR, a reduced energy flux through the electron transfer chain along with a reduced energy dissipation per reaction center improved the maximum quantum yield of PSII, irrespective of genotype. HLFR increased net photosynthesis and gas exchange properties in a genotype-dependent manner. FR-dependent regulation of hormones was affected by light signaling. It appeared that PHYB affected the levels of abscisic acid and salicylic acid while PHYA took part in the regulation of CK in FR-exposed plants. Overall, light intensity and signaling of FR influenced plants' photosynthesis and growth by altering electron transport, gas exchange, and changes in the level of endogenous hormones.


Asunto(s)
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Arabidopsis/metabolismo , Fitocromo B/genética , Fitocromo A/genética , Fitocromo A/metabolismo , Fotosíntesis , Hormonas
18.
Plant Physiol Biochem ; 209: 108520, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522131

RESUMEN

In Arabidopsis, the plastidial isoform of phosphoglucose isomerase, PGI1, mediates growth and photosynthesis, likely due to its involvement in the vascular production of cytokinins (CK). To examine this hypothesis, we characterized pgi1-2 knockout plants impaired in PGI1 and pgi1-2 plants specifically expressing PGI1 in root tips and vascular tissues. Moreover, to investigate whether the phenotype of pgi1-2 plants is due to impairments in the plastidial oxidative pentose phosphate pathway (OPPP) or the glycolytic pathway, we characterized pgl3-1 plants with reduced OPPP and pfk4pfk5 knockout plants impaired in plastidial glycolysis. Compared with wild-type (WT) leaves, pgi1-2 leaves exhibited weaker expression of photosynthesis- and 2-C-methyl-D-erythritol 4-P (MEP) pathway-related proteins, and stronger expression of oxidative stress protection-related enzymes. Consistently, pgi1-2 leaves accumulated lower levels of chlorophyll, and higher levels of tocopherols, flavonols and anthocyanins than the WT. Vascular- and root tip-specific PGI1 expression countered the reduced photosynthesis, low MEP pathway-derived CK content, dwarf phenotype and the metabolic characteristics of pgi1-2 plants, reverting them to WT-like levels. Moreover, pgl3-1, but not pfk4pfk5 plants phenocopied pgi1-2. Histochemical analyses of plants expressing GUS under the control of promoter regions of genes encoding plastidial OPPP enzymes exhibited strong GUS activity in root tips and vascular tissues. Overall, our findings show that root tip and vascular PGI1-mediated plastidial OPPP activity affects photosynthesis and growth through mechanisms involving long-distance modulation of the leaf proteome by MEP pathway-derived CKs.


Asunto(s)
Arabidopsis , Vía de Pentosa Fosfato , Antocianinas/metabolismo , Fotosíntesis , Arabidopsis/metabolismo , Citocininas/metabolismo
19.
Plants (Basel) ; 11(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35736745

RESUMEN

The application of biostimulants appears to be an environmentally friendly, innovative, and sustainable agronomical tool to mitigate the negative effects induced by adverse climatology in traditional grape-growing regions such as La Rioja (Spain). However, their mechanism of action in grapevines is still unclear. We evaluated how commercial substances (two from Ascophyllum nodosum extraction and one amino acids-based biostimulant) and the non-proteinogenic amino acid ß-aminobutyric acid (BABA) affect the quality and quantity of musts and grapes in Vitis vinifera L. cv. Tempranillo from a semi-arid region of La Rioja during two seasons. We hypothesized an enhancement in organic metabolites in berries and leaves in response to these treatments, changing the organoleptic characteristics of the final products. The treatments altered the primary metabolites such as carbohydrates, organic acids (AcOrg), and free amino acids, first in the leaves as the effect of the foliar application and second in grapes and musts. As the main result, the biostimulant efficiency depended on the climatology and vineyard location to improve the final yield. Whereas biostimulant application enhanced the yield in 2018 (less dry year), it did not help production in 2019 (dry year). BABA was the most efficient biostimulant, enhancing plant production. Regarding yield quality, the biostimulant application improved the musts mainly by enhancing the fumaric acid content and by reducing carbohydrates, except in BABA-treated plants, where they were accumulated. These results corroborate biostimulants as an exciting approach in wine production, especially for improving wine quality.

20.
Food Chem ; 375: 131845, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34923398

RESUMEN

This work presents a pipeline for optimizing semi-hydroponic growth conditions and analyzes the impact on the growth and metabolism in three Mentha species (M. arvensis, M. x piperita, or M. spicata) and three Ocimum basilicum genotypes (́Chládek cervená́, ́Litrá, or ́Mánes). The plant growth and the content- of nitrogen-containing compounds, phenolics, and terpenoids were determined under different nitrate concentrations and salt stress. Different responses were observed among genotypes for both species. ́Chládek cervená́ had the best growth under low nitrate, with lower histamine and higher flavonoid levels. Mentha x piperita was the best mint species performing under low nitrate and salt stress. Altogether, we demonstrate that a combination of phenomics and metabolomics is ideal to identify the optimal growth conditions for these plants and the chemical markers associated with these conditions. Besides, we showed that both primary and secondary metabolites can be good markers for classifying both species.


Asunto(s)
Mentha , Ocimum basilicum , Hidroponía , Mentha piperita , Fenoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA