RESUMEN
Streptomyces species are experts in the production of bioactive secondary metabolites; however, their taxonomy has fallen victim of the tremendous interest shown by the scientific community, evident in the discovery of numerous synonymous in public repositories. Based on genomic data from NCBI Datasets and nomenclature from the LPSN database, we compiled a dataset of 600 Streptomyces species along with their annotations and metadata. To pinpoint the most suitable taxonomic classification method, we conducted a comprehensive assessment comparing multiple methodologies, including analysis of 16S rRNA, individual housekeeping genes, multilocus sequence analysis (MLSA), and Fast Average Nucleotide Identity (FastANI) on a subset of 409 species with complete data. Due to insufficient resolution of 16S rRNA and inconsistency observed in individual housekeeping genes, we performed a more in-depth analysis, comparing only FastANI and MLSA, which expanded our dataset to include 502 species. With FastANI validated as the preferred method, we conducted pairwise analysis on the entire dataset identifying 59 non-unique species among the 600, and subsequently refined the dataset to 541 unique species. Additionally, we collected data on 724 uncharacterized Streptomyces strains to investigate the uniqueness potential of the unannotated fraction of the Streptomyces genus. Utilizing FastANI, 289 strains could be successfully classified into one of the 541 Streptomyces species. KEY POINTS: ⢠Evaluation of taxonomic classification methods for Streptomyces species. ⢠Whole genome analysis, specifically FastANI, has been chosen as preferred method. ⢠Various reclassifications are proposed within the Streptomyces genus.
Asunto(s)
Genoma Bacteriano , Tipificación de Secuencias Multilocus , ARN Ribosómico 16S , Streptomyces , Streptomyces/genética , Streptomyces/clasificación , ARN Ribosómico 16S/genética , Filogenia , Genes Esenciales/genética , ADN Bacteriano/genética , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Not changing the native constitution of genes prior to their expression by a heterologous host can affect the amount of proteins synthesized as well as their folding, hampering their activity and even cell viability. Over the past decades, several strategies have been developed to optimize the translation of heterologous genes by accommodating the difference in codon usage between species. While there have been a handful of studies assessing various codon optimization strategies, to the best of our knowledge, no research has been performed towards the evaluation and comparison of codon harmonization algorithms. To highlight their importance and encourage meaningful discussion, we compared different open-source codon harmonization tools pertaining to their in silico performance, and we investigated the influence of different gene-specific factors. RESULTS: In total, 27 genes were harmonized with four tools toward two different heterologous hosts. The difference in %MinMax values between the harmonized and the original sequences was calculated (ΔMinMax), and statistical analysis of the obtained results was carried out. It became clear that not all tools perform similarly, and the choice of tool should depend on the intended application. Almost all biological factors under investigation (GC content, RNA secondary structures and choice of heterologous host) had a significant influence on the harmonization results and thus must be taken into account. These findings were substantiated using a validation dataset consisting of 8 strategically chosen genes. CONCLUSIONS: Due to the size of the dataset, no complex models could be developed. However, this initial study showcases significant differences between the results of various codon harmonization tools. Although more elaborate investigation is needed, it is clear that biological factors such as GC content, RNA secondary structures and heterologous hosts must be taken into account when selecting the codon harmonization tool.
Asunto(s)
Algoritmos , Proteínas , Codón , Proteínas/genética , Uso de Codones , Factores BiológicosRESUMEN
BACKGROUND: The marine environment hosts the vast majority of living species and marine microbes that produce natural products with great potential in providing lead compounds for drug development. With over 70% of Earth's surface covered in water and the high interaction rate associated with liquid environments, this has resulted in many marine natural product discoveries. Our improved understanding of the biosynthesis of these molecules, encoded by gene clusters, along with increased genomic information will aid us in uncovering even more novel compounds. RESULTS: We introduce MariClus (https://www.mariclus.com), an online user-friendly platform for mining and visualizing marine gene clusters. The first version contains information on clusters and the predicted molecules for over 500 marine-related prokaryotes. The user-friendly interface allows scientists to easily search by species, cluster type or molecule and visualize the information in table format or graphical representation. CONCLUSIONS: This new online portal simplifies the exploration and comparison of gene clusters in marine species for scientists and assists in characterizing the bioactive molecules they produce. MariClus integrates data from public sources, like GenBank, MIBiG and PubChem, with genome mining results from antiSMASH. This allows users to access and analyze various aspects of marine natural product biosynthesis and diversity.
Asunto(s)
Productos Biológicos , Familia de Multigenes , Desarrollo de Medicamentos , Genómica , Células ProcariotasRESUMEN
The marine environment is an excellent resource for natural products with therapeutic potential. Its microbial inhabitants, often associated with other marine organisms, are specialized in the synthesis of bioactive secondary metabolites. Similar to their terrestrial counterparts, marine Actinobacteria are a prevalent source of these natural products. Here, we discuss 77 newly discovered alkaloids produced by such marine Actinobacteria between 2017 and mid-2021, as well as the strategies employed in their elucidation. While 12 different classes of alkaloids were unraveled, indoles, diketopiperazines, glutarimides, indolizidines, and pyrroles were most dominant. Discoveries were mainly based on experimental approaches where microbial extracts were analyzed in relation to novel compounds. Although such experimental procedures have proven useful in the past, the methodologies need adaptations to limit the chance of compound rediscovery. On the other hand, genome mining provides a different angle for natural product discovery. While the technology is still relatively young compared to experimental screening, significant improvement has been made in recent years. Together with synthetic biology tools, both genome mining and extract screening provide excellent opportunities for continued drug discovery from marine Actinobacteria.
Asunto(s)
Actinobacteria , Alcaloides/farmacología , Alcaloides/química , Animales , Organismos Acuáticos , Descubrimiento de DrogasRESUMEN
As a biorefinery platform host, Escherichia coli has been used extensively to produce metabolites of commercial interest. Integration of foreign DNA onto the bacterial genome allows for stable expression overcoming the need for plasmid expression and its associated instability. Despite the development of numerous tools and genome editing technologies, the question of where to incorporate a synthetic pathway remains unanswered. To address this issue, we studied the genomic expression in E. coli and linked it not only to 26 rationally selected genomic locations, but also to the gene direction in relation to the DNA replication fork, to the carbon and nitrogen source, to DNA folding and supercoiling, and to metabolic burden. To enable these experiments, we have designed a fluorescent expression cassette to eliminate specific local effects on gene expression. Overall it can be concluded that although the expression range obtained by changing the genomic location of a pathway is small compared to the range typically seen in promoter-RBS libraries, the effect of culture medium, environmental stress and metabolic burden can be substantial. The characterization of multiple effects on genomic expression, and the associated libraries of well-characterized strains, will only stimulate and improve the creation of stable production hosts fit for industrial settings.
Asunto(s)
Escherichia coli , Edición Génica , Escherichia coli/genética , Genoma Bacteriano/genética , Genómica , PlásmidosRESUMEN
Starmerella bombicola very efficiently produces the secondary metabolites sophorolipids (SLs). Their biosynthesis is not-growth associated and highly upregulated in the stationary phase. Despite high industrial and academic interest, the underlying regulation of SL biosynthesis remains unknown. In this paper, potential regulation of SL biosynthesis through the telomere positioning effect (TPE) was investigated, as the SL gene cluster is located adjacent to a telomere. An additional copy of this gene cluster was introduced elsewhere in the genome to investigate if this results in a decoy of regulation. Indeed, for the new strain, the onset of SL production was shifted to the exponential phase. This result was confirmed by RT-qPCR analysis. The TPE effect was further investigated by developing and applying a suitable reporter system for this non-conventional yeast, enabling non-biased comparison of gene expression between the subtelomeric CYP52M1- and the URA3 locus. This was done with a constitutive endogenous promotor (pGAPD) and one of the endogenous promotors of the SL biosynthetic gene cluster (pCYP52M1). A clear positioning effect was observed for both promotors with significantly higher GFP expression levels at the URA3 locus. No clear GFP upregulation was observed in the stationary phase for any of the new strains.
Asunto(s)
Regulación Fúngica de la Expresión Génica , Familia de Multigenes , Ácidos Oléicos/biosíntesis , Ácidos Oléicos/genética , Saccharomycetales/genética , Metabolismo Secundario , Telómero/genéticaRESUMEN
Glucolipids (GLs) are glycolipid biosurfactants with promising properties. These GLs are composed of glucose attached to a hydroxy fatty acid through a ω and/or ω-1 glycosidic linkage. Up until today these interesting molecules could only be produced using an engineered Starmerella bombicola strain (∆ugtB1::URA3 G9) producing GLs instead of sophorolipids, albeit with a very low average productivity (0.01 g·L-1 ·h-1 ). In this study, we investigated the reason(s) for this via reverse-transcription quantitative polymerase chain reaction and Liquid chromatography-multireaction monitoring-mass spectrometry. We found that all glycolipid biosynthetic genes and enzymes were downregulated in the ∆ugtB1 G9 strain in comparison to the wild type. The underlying reason for this downregulation was further investigated by performing quantitative metabolome comparison of the ∆ugtB1 G9 strain with the wild type and two other engineered strains also tinkered in their glycolipid biosynthetic gene cluster. This analysis revealed a clear distortion of the entire metabolism of the ∆ugtB1 G9 strain compared to all the other strains. Because the parental strain of the former was a spontaneous ∆ura3 mutant potentially containing other "hidden" mutations, a new GL production strain was generated based on a rationally engineered ∆ura3 mutant (PT36). Indeed, a 50-fold GL productivity increase (0.51 g·L-1 ·h-1 ) was obtained with the new ∆ugtB1::URA3 PT36 strain compared with the G9-based strain (0.01 g·L-1 ·h-1 ) in a 10 L bioreactor experiment, yielding 118 g/L GLs instead of 8.39 g/L. Purification was investigated and basic properties of the purified GLs were determined. This study forms the base for further development and optimization of S. bombicola as a production platform strain for (new) biochemicals.
Asunto(s)
Glucolípidos , Ingeniería Metabólica/métodos , Saccharomycetales , Tensoactivos , Reactores Biológicos , Fermentación , Glucolípidos/química , Glucolípidos/genética , Glucolípidos/metabolismo , Metaboloma/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Tensoactivos/química , Tensoactivos/metabolismoRESUMEN
To decrease our dependency for the diminishing source of fossils resources, bio-based alternatives are being explored for the synthesis of commodity and high-value molecules. One example in this ecological initiative is the microbial production of the biosurfactant sophorolipids by the yeast Starmerella bombicola. Sophorolipids are surface-active molecules mainly used as household and laundry detergents. Because S. bombicola is able to produce high titers of sophorolipids, the yeast is also used to increase the portfolio of lipophilic compounds through strain engineering. Here, the one-step microbial production of hydroxy fatty acids by S. bombicola was accomplished by the selective blockage of three catabolic pathways through metabolic engineering. Successful production of 17.39 g/l (ω-1) linked hydroxy fatty acids was obtained by the successive blockage of the sophorolipid biosynthesis, the ß-oxidation and the ω-oxidation pathways. Minor contamination of dicarboxylic acids and fatty aldehydes were successfully removed using flash chromatography. This way, S. bombicola was further expanded into a flexible production platform of economical relevant compounds in the chemical, food and cosmetic industries.
Asunto(s)
Ácidos Grasos/biosíntesis , Ingeniería Metabólica/métodos , Saccharomycetales/metabolismo , Ácidos Dicarboxílicos/análisis , Microbiología Industrial , Redes y Vías Metabólicas , Ácidos Oléicos/biosíntesis , Oxidación-ReducciónRESUMEN
Chromosomal integration of biosynthetic pathways for the biotechnological production of high-value chemicals is a necessity to develop industrial strains with a high long-term stability and a low production variability. However, the introduction of multiple transcription units into the microbial genome remains a difficult task. Despite recent advances, current methodologies are either laborious or efficiencies highly fluctuate depending on the length and the type of the construct. Here we present serine integrase recombinational engineering (SIRE), a novel methodology which combines the ease of recombinase-mediated cassette exchange (RMCE) with the selectivity of orthogonal att sites of the PhiC31 integrase. As a proof of concept, this toolbox is developed for Escherichia coli. Using SIRE we were able to introduce a 10.3 kb biosynthetic gene cluster on different locations throughout the genome with an efficiency of 100% for the integrating step and without the need for selection markers on the knock-in cassette. Next to integrating large fragments, the option for multitargeting, for deleting operons, as well as for performing in vivo assemblies further expand and proof the versatility of the SIRE toolbox for E. coli. Finally, the serine integrase PhiC31 was also applied in the yeast Saccharomyces cerevisiae as a marker recovery tool, indicating the potential and portability of this toolbox.
Asunto(s)
Escherichia coli/genética , Edición Génica/métodos , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/genética , Vías Biosintéticas/genética , Inestabilidad Genómica , Integrasas/metabolismo , Mutagénesis Insercional/métodosRESUMEN
BACKGROUND: Leaping DNA read-and-write technologies, and extensive automation and miniaturization are radically transforming the field of biological experimentation by providing the tools that enable the cost-effective high-throughput required to address the enormous complexity of biological systems. However, standardization of the synthetic biology workflow has not kept abreast with dwindling technical and resource constraints, leading, for example, to the collection of multi-level and multi-omics large data sets that end up disconnected or remain under- or even unexploited. PURPOSE: In this contribution, we critically evaluate the various efforts, and the (limited) success thereof, in order to introduce standards for defining, designing, assembling, characterizing, and sharing synthetic biology parts. The causes for this success or the lack thereof, as well as possible solutions to overcome these, are discussed. CONCLUSION: Akin to other engineering disciplines, extensive standardization will undoubtedly speed-up and reduce the cost of bioprocess development. In this respect, further implementation of synthetic biology standards will be crucial for the field in order to redeem its promise, i.e. to enable predictable forward engineering.
Asunto(s)
Bioingeniería/normas , Biología Sintética/normas , Investigación Biomédica/normas , Biotecnología/normas , ADN , Escherichia coli , Reproducibilidad de los ResultadosRESUMEN
In this review, we focus on one of the most important microbial producers of biosurfactants, Starmerella bombicola. Emphasis is laid on the discovery, taxonomy, habitat, cellular characteristics, biochemistry and genetics of this non-pathogenic yeast. Biosurfactants are natural surface-active compounds produced by several types of microorganisms and have been considered an interesting alternative to synthetic surfactants. The sophorolipids produced by S. bombicola are promising biosurfactants, with application potential in food, pharmaceutical, cosmetic and cleaning industries. The fundamental knowledge described in this review is of crucial interest to optimize production of these promising compounds. Furthermore, it can be translated to produce novel non-native bioactive molecules with S. bombicola, and to deepen fundamental knowledge on other non-conventional yeast species and in the end to broaden their application potential as well.
Asunto(s)
Productos Biológicos/metabolismo , Microbiología Industrial , Ácidos Oléicos/metabolismo , Saccharomycetales/metabolismo , Tensoactivos/metabolismo , Ecosistema , Regulación Fúngica de la Expresión Génica , Ácidos Oléicos/biosíntesis , Ácidos Oléicos/genética , Filogenia , Saccharomycetales/clasificación , Saccharomycetales/genética , Saccharomycetales/crecimiento & desarrolloRESUMEN
Although sophorolipids (SLs) produced by S. bombicola are a real showcase for the industrialization of microbial biosurfactants, some important drawbacks are associated with this efficient biological process, e.g., the simultaneous production of acidic and lactonic SLs. Depending on the application, there is a requirement for the naturally produced mixture to be manipulated to give defined ratios of the components. Recently, the enzyme responsible for the lactonization of SLs was discovered. The discovery of the gene encoding this lactone esterase (sble) enabled the development of promising S. bombicola strains producing either solely lactonic (using a sble overexpression strain described in this paper: oe sble) or solely acidic SLs (using a sble deletion strain, which was recently described, but not characterized yet: Δsble). The new S. bombicola strains were used to investigate the production processes (fermentation and purification) of either lactonic or acidic SLs. The strains maintain the high inherent productivities of the wild-type or even perform slightly better and thus represent a realistic industrial opportunity. 100% acidic SLs with a mixed acetylation pattern were obtained for the Δsble strain, while the inherent capacity to selectively produce lactonic SLs was significantly increased (+42%) for the oe sble strain (99% lactonic SLs). Moreover, the regulatory effect of citrate on lactone SL formation for the wild-type was absent in this new strain, which indicates that it is more robust and better suited for the industrial production of lactonic SLs. Basic parameters were determined for the purified SLs, which confirm that the two new strains produce molecules with distinctive properties of which the application potential can now easily be investigated independently.
Asunto(s)
Productos Biológicos/metabolismo , Esterasas/metabolismo , Glucolípidos/metabolismo , Lactonas/metabolismo , Saccharomycetales/enzimología , Saccharomycetales/metabolismo , Tensoactivos/metabolismo , Esterasas/genética , Eliminación de Gen , Expresión Génica , Ingeniería Metabólica , Saccharomycetales/genéticaRESUMEN
BACKGROUND: Imbalance in cofactors causing the accumulation of intermediates in biosynthesis pathways is a frequently occurring problem in metabolic engineering when optimizing a production pathway in a microorganism. In our previous study, a single knock-out Citrobacter werkmanii ∆dhaD was constructed for improved 1,3-propanediol (PDO) production. Instead of an enhanced PDO concentration on this strain, the gene knock-out led to the accumulation of the toxic intermediate 3-hydroxypropionaldehyde (3-HPA). The hypothesis was emerged that the accumulation of this toxic intermediate, 3-HPA, is due to a cofactor imbalance, i.e. to the limited supply of reducing equivalents (NADH). Here, this bottleneck is alleviated by rationally engineering cell metabolism to balance the cofactor supply. RESULTS: By eliminating non-essential NADH consuming enzymes (such as lactate dehydrogenase coded by ldhA, and ethanol dehydrogenase coded by adhE) or by increasing NADH producing enzymes, the accumulation of 3-HPA is minimized. Combining the above modifications in C. werkmanii ∆dhaD resulted in the strain C. werkmanii ∆dhaD∆ldhA∆adhE::ChlFRT which provided the maximum theoretical yield of 1.00 ± 0.03 mol PDO/mol glycerol when grown on glucose/glycerol (0.33 molar ratio) on flask scale under anaerobic conditions. On bioreactor scale, the yield decreased to 0.73 ± 0.01 mol PDO/mol glycerol although no 3-HPA could be measured, which indicates the existence of a sink of glycerol by a putative glycerol dehydrogenase, channeling glycerol to the central metabolism. CONCLUSIONS: In this study, a multiple knock-out was created in Citrobacter species for the first time. As a result, the concentration of the toxic intermediate 3-HPA was reduced to below the detection limit and the maximal theoretical PDO yield on glycerol was reached.
Asunto(s)
Citrobacter/metabolismo , Gliceraldehído/análogos & derivados , Ingeniería Metabólica/métodos , Propano/metabolismo , Glicoles de Propileno/metabolismo , Secuencia de Aminoácidos , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos/microbiología , Citrobacter/efectos de los fármacos , Citrobacter/enzimología , Citrobacter/crecimiento & desarrollo , Fermentación/efectos de los fármacos , Técnicas de Inactivación de Genes , Glucosa/farmacología , Gliceraldehído/metabolismo , Glicerol/farmacología , Glicerol Quinasa/metabolismo , Concentración de Iones de Hidrógeno , Metaboloma/efectos de los fármacos , Datos de Secuencia Molecular , Mutación/genética , NAD/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato/efectos de los fármacos , Deshidrogenasas del Alcohol de Azúcar/química , Deshidrogenasas del Alcohol de Azúcar/metabolismoRESUMEN
BACKGROUND: 1,3-propanediol (PDO) is a substantially industrial metabolite used in the polymer industry. Although several natural PDO production hosts exist, e.g. Klebsiella sp., Citrobacter sp. and Clostridium sp., the PDO yield on glycerol is insufficient for an economically viable bio-process. Enhancing this yield via strain improvement can be achieved by disconnecting the production and growth pathways. In the case of PDO formation, this approach results in a microorganism metabolizing glycerol strictly for PDO production, while catabolizing a co-substrate for growth and maintenance. We applied this strategy to improve the PDO production with Citrobacter werkmanii DSM17579. RESULTS: Genetic tools were developed and used to create Citrobacter werkmanii DSM17579 ∆dhaD in which dhaD, encoding for glycerol dehydrogenase, was deleted. Since this strain was unable to grow on glycerol anaerobically, both pathways were disconnected. The knock-out strain was perturbed with 13 different co-substrates for growth and maintenance. Glucose was the most promising, although a competition between NADH-consuming enzymes and 1,3-propanediol dehydrogenase emerged. CONCLUSION: Due to the deletion of dhaD in Citrobacter werkmanii DSM17579, the PDO production and growth pathway were split. As a consequence, the PDO yield on glycerol was improved 1,5 times, strengthening the idea that Citrobacter werkmanii DSM17579 could become an industrially interesting host for PDO production.
Asunto(s)
Citrobacter/genética , Citrobacter/metabolismo , Glicoles de Propileno/metabolismo , Deshidrogenasas del Alcohol de Azúcar/genética , Alcohol Deshidrogenasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citrobacter/efectos de los fármacos , Citrobacter/crecimiento & desarrollo , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Glucosa/farmacología , Glicerol/metabolismo , Glicerol/farmacología , Concentración de Iones de Hidrógeno , Glicoles de Propileno/química , Especificidad por Sustrato , Deshidrogenasas del Alcohol de Azúcar/deficiencia , Deshidrogenasas del Alcohol de Azúcar/metabolismoRESUMEN
Biosurfactants (BSs) are a class of secondary metabolites representing a wide variety of structures that can be produced from renewable feedstock by a wide variety of micro-organisms. They have (potential) applications in the medical world, personal care sector, mining processes, food industry, cosmetics, crop protection, pharmaceuticals, bio-remediation, household detergents, paper and pulp industry, textiles, paint industries, etc. Especially glycolipid BSs like sophorolipids (SLs), rhamnolipids (RLs), mannosylerythritol lipids (MELs) and cellobioselipids (CBLs) have been described to provide significant opportunities to (partially) replace chemical surfactants. The major two factors currently limiting the penetration of BSs into the market are firstly the limited structural variety and secondly the rather high production price linked with the productivity. One of the keys to resolve the above mentioned bottlenecks can be found in the genetic engineering of natural producers. This could not only result in more efficient (economical) recombinant producers, but also in a diversification of the spectrum of available BSs as such resolving both limiting factors at once. Unraveling the genetics behind the biosynthesis of these interesting biological compounds is indispensable for the tinkering, fine tuning and rearrangement of these biological pathways with the aim of obtaining higher yields and a more extensive structural variety. Therefore, this review focuses on recent developments in the investigation of the biosynthesis, genetics and regulation of some important members of the family of the eukaryotic glycolipid BSs (MELs, CBLs and SLs). Moreover, recent biotechnological achievements and the industrial potential of engineered strains are discussed.
Asunto(s)
Biotecnología/métodos , Eucariontes/genética , Eucariontes/metabolismo , Regulación de la Expresión Génica , Familia de Multigenes , Tensoactivos/metabolismoRESUMEN
In natural 1,3-propanediol (PDO) producing microorganisms such as Klebsiella pneumoniae, Citrobacter freundii and Clostridium sp., the genes coding for PDO producing enzymes are grouped in a dha cluster. This article describes the dha cluster of a novel candidate for PDO production, Citrobacter werkmanii DSM17579 and compares the cluster to the currently known PDO clusters of Enterobacteriaceae and Clostridiaceae. Moreover, we attribute a putative function to two previously unannotated ORFs, OrfW and OrfY, both in C. freundii and in C. werkmanii: both proteins might form a complex and support the glycerol dehydratase by converting cob(I)alamin to the glycerol dehydratase cofactor coenzyme B12. Unraveling this biosynthesis cluster revealed high homology between the deduced amino acid sequence of the open reading frames of C. werkmanii DSM17579 and those of C. freundii DSM30040 and K. pneumoniae MGH78578, i.e., 96 and 87.5 % identity, respectively. On the other hand, major differences between the clusters have also been discovered. For example, only one dihydroxyacetone kinase (DHAK) is present in the dha cluster of C. werkmanii DSM17579, while two DHAK enzymes are present in the cluster of K. pneumoniae MGH78578 and Clostridium butyricum VPI1718.
Asunto(s)
Proteínas Bacterianas , Citrobacter , Genes Bacterianos/fisiología , Familia de Multigenes/fisiología , Sistemas de Lectura Abierta/fisiología , Glicoles de Propileno/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citrobacter/enzimología , Citrobacter/genéticaRESUMEN
BACKGROUND: Sophorolipids (SLs) are a class of natural, biodegradable surfactants that found their way as ingredients for environment friendly cleaning products, cosmetics and nanotechnological applications. Large-scale production relies on fermentations using the yeast Starmerella bombicola that naturally produces high titers of SLs from renewable resources. The resulting product is typically an extracellular mixture of acidic and lactonic congeners. Previously, we identified an esterase, termed Starmerella bombicola lactone esterase (SBLE), believed to act as an extracellular reverse lactonase to directly use acidic SLs as substrate. RESULTS: We here show based on newly available pure substrates, HPLC and mass spectrometric analysis, that the actual substrates of SBLE are in fact bola SLs, revealing that SBLE actually catalyzes an intramolecular transesterification reaction. Bola SLs contain a second sophorose attached to the fatty acyl group that acts as a leaving group during lactonization. CONCLUSIONS: The biosynthetic function by which the Starmerella bombicola 'lactone esterase' converts acidic SLs into lactonic SLs should be revised to a 'transesterase' where bola SL are the true intermediate. This insights paves the way for alternative engineering strategies to develop designer surfactants.
RESUMEN
BACKGROUND: The yeast Starmerella bombicola is renowned for its highly efficient sophorolipid production, reaching titers and productivities of (over) 200 g/L and 2 g/(L h), respectively. This inherent efficiency has led to the commercialization of sophorolipids. While the sophorolipid biosynthetic pathway has been elucidated a few years ago, in this study, it is revisited and true key intermediates are revealed. RESULTS: Recently, Starmerella bombicola strains developed and evaluated in the past were reevaluated unveiling unexpected findings. The AT enzyme encoded in the sophorolipid biosynthetic gene cluster is the only described enzyme known to acetylate sophorolipids, while the SBLE enzyme encoded by the SBLE gene is described to catalyze the conversion of (acetylated) acidic sophorolipids into lactonic sophorolipids. A double knockout of both genes was described to result in the generation of bolaform sophorolipids. However, new experiments performed with respective S. bombicola strains Δsble, Δat Δsble, and ∆at revealed inconsistencies with the current understanding of the SL pathway. It was observed that the ∆sble strain produces mainly bolaform sophorolipids with higher acetylation degrees instead of acidic sophorolipids. Furthermore, the ∆at strain produces predominantly bolaform sophorolipids and lactonic sophorolipids with lower acetylation degrees, while the ∆at ∆sble strain predominantly produces bolaform sophorolipids with lower acetylation degrees. These results indicate that the AT enzyme is not the only enzyme responsible for acetylation of sophorolipids, while the SBLE enzyme performs an intramolecular transesterification reaction on bolaform glycolipids instead of an esterification reaction on acidic sophorolipids. These findings, together with recent in vitro data, led us to revise the sophorolipid biosynthetic pathway. CONCLUSIONS: Bolaform sophorolipids instead of acidic sophorolipids are the key intermediates in the biosynthetic pathway towards lactonic sophorolipids. Bolaform sophorolipids are found in very small amounts in extracellular S. bombicola wild type broths as they are very efficiently converted into lactonic sophorolipids, while acidic sophorolipids build up as they cannot be converted. Furthermore, acetylation of sophorolipids is not exclusively performed by the AT enzyme encoded in the sophorolipid biosynthetic gene cluster and acetylation of bolaform sophorolipids promotes their transesterification. These findings led to the revision of the industrially relevant sophorolipid biosynthetic pathway.
RESUMEN
The yeast Candida bombicola is capable of producing high amounts (400 g/L) of the biosurfactant sophorolipids. The genetic makeup of this industrially important yeast has recently been uncovered and molecular manipulation techniques have been developed. Hence, all tools for the development of new bioprocesses with C. bombicola are now available. As a proof of concept, the production of two totally different molecules was aimed for: the bioplastic polyhydroxyalkanoate (PHA) and a new-to-nature cellobioselipid-biosurfactant. Integration of the new functionalities at genomic loci necessary for sophorolipid production safeguards the new biomolecules from sophorolipid contamination, while taking advantage of the regulation of the sophorolipid gene cluster. A maximum yield of 2.0% wt/dwt PHA was obtained; furthermore, this is the first time cellobioselipid synthesis by a non-natural producer is reported. We here provided proof of concept that C. bombicola can be transformed into a platform organism for the production of tailor-made biomolecules.
Asunto(s)
Bioingeniería/métodos , Biotecnología/métodos , Candida , Glucolípidos/metabolismo , Polihidroxialcanoatos/metabolismo , Candida/genética , Candida/metabolismo , Cromatografía Líquida de Alta Presión , Microbiología Industrial , Espectrometría de Masas , Oxidación-Reducción , Tensoactivos/metabolismoRESUMEN
Sophorolipids are biobased and biodegradable glycolipid surface-active agents contributing to the shift from petroleum to biobased surfactants, associated with clear environmental benefits. However, their production cost is currently too high to allow commercialisation. Therefore, a continuous sophorolipid production process was evaluated, i.e., a retentostat with an external filtration unit. Despite an initial increase in volumetric productivity, productivity eventually declined to almost 0 g L-1 h-1. Following comprehensive metabolomics on supernatant obtained from a standardised retentostat, we hypothesised exhaustion of the N-starvation-induced autophagy as the main mechanism responsible for the decline in bolaform sophorolipid productivity. Thirty-six metabolites that correlate with RNA/protein autophagy and high sophorolipid productivity were putatively identified. In conclusion, our results unveil a plausible cause of this bola sophorolipid productivity decline in an industrially relevant bioreactor set-up, which may thus impact majorly on future yeast biosurfactant regulation studies and the finetuning of bola sophorolipid production processes.