Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Acta Neuropathol ; 144(3): 437-464, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35876881

RESUMEN

Dysfunction and degeneration of synapses is a common feature of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). A GGGGCC hexanucleotide repeat expansion in the C9ORF72 gene is the main genetic cause of ALS/FTD (C9ALS/FTD). The repeat expansion leads to reduced expression of the C9orf72 protein. How C9orf72 haploinsufficiency contributes to disease has not been resolved. Here we identify the synapsin family of synaptic vesicle proteins, the most abundant group of synaptic phosphoproteins, as novel interactors of C9orf72 at synapses and show that C9orf72 plays a cell-autonomous role in the regulation of excitatory synapses. We mapped the interaction of C9orf72 and synapsin to the N-terminal longin domain of C9orf72 and the conserved C domain of synapsin, and show interaction of the endogenous proteins in synapses. Functionally, C9orf72 deficiency reduced the number of excitatory synapses and decreased synapsin levels at remaining synapses in vitro in hippocampal neuron cultures and in vivo in the hippocampal mossy fibre system of C9orf72 knockout mice. Consistent with synaptic dysfunction, electrophysiological recordings identified impaired excitatory neurotransmission and network function in hippocampal neuron cultures with reduced C9orf72 expression, which correlated with a severe depletion of synaptic vesicles from excitatory synapses in the hippocampus of C9orf72 knockout mice. Finally, neuropathological analysis of post-mortem sections of C9ALS/FTD patient hippocampus with C9orf72 haploinsufficiency revealed a marked reduction in synapsin, indicating that disruption of the interaction between C9orf72 and synapsin may contribute to ALS/FTD pathobiology. Thus, our data show that C9orf72 plays a cell-autonomous role in the regulation of neurotransmission at excitatory synapses by interaction with synapsin and modulation of synaptic vesicle pools, and identify a novel role for C9orf72 haploinsufficiency in synaptic dysfunction in C9ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72/metabolismo , Demencia Frontotemporal , Sinapsinas/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Ratones , Ratones Noqueados , Sinapsis/patología
2.
EMBO J ; 35(15): 1656-76, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27334615

RESUMEN

A GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). C9orf72 encodes two C9orf72 protein isoforms of unclear function. Reduced levels of C9orf72 expression have been reported in C9ALS/FTD patients, and although C9orf72 haploinsufficiency has been proposed to contribute to C9ALS/FTD, its significance is not yet clear. Here, we report that C9orf72 interacts with Rab1a and the Unc-51-like kinase 1 (ULK1) autophagy initiation complex. As a Rab1a effector, C9orf72 controls initiation of autophagy by regulating the Rab1a-dependent trafficking of the ULK1 autophagy initiation complex to the phagophore. Accordingly, reduction of C9orf72 expression in cell lines and primary neurons attenuated autophagy and caused accumulation of p62-positive puncta reminiscent of the p62 pathology observed in C9ALS/FTD patients. Finally, basal levels of autophagy were markedly reduced in C9ALS/FTD patient-derived iNeurons. Thus, our data identify C9orf72 as a novel Rab1a effector in the regulation of autophagy and indicate that C9orf72 haploinsufficiency and associated reductions in autophagy might be the underlying cause of C9ALS/FTD-associated p62 pathology.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Autofagia , Fenómenos Fisiológicos Celulares , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Proteína C9orf72 , Células Cultivadas , Demencia Frontotemporal/patología , Humanos , Neuronas/química , Neuronas/metabolismo
3.
Brain ; 142(3): 586-605, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30698736

RESUMEN

As clinical evidence supports a negative impact of dysfunctional energy metabolism on the disease progression in amyotrophic lateral sclerosis, it is vital to understand how the energy metabolic pathways are altered and whether they can be restored to slow disease progression. Possible approaches include increasing or rerouting catabolism of alternative fuel sources to supplement the glycolytic and mitochondrial pathways such as glycogen, ketone bodies and nucleosides. To analyse the basis of the catabolic defect in amyotrophic lateral sclerosis we used a novel phenotypic metabolic array. We profiled fibroblasts and induced neuronal progenitor-derived human induced astrocytes from C9orf72 amyotrophic lateral sclerosis patients compared to normal controls, measuring the rates of production of reduced nicotinamide adenine dinucleotides from 91 potential energy substrates. This approach shows for the first time that C9orf72 human induced astrocytes and fibroblasts have an adenosine to inosine deamination defect caused by reduction of adenosine deaminase, which is also observed in induced astrocytes from sporadic patients. Patient-derived induced astrocyte lines were more susceptible to adenosine-induced toxicity, which could be mimicked by inhibiting adenosine deaminase in control lines. Furthermore, adenosine deaminase inhibition in control induced astrocytes led to increased motor neuron toxicity in co-cultures, similar to the levels observed with patient derived induced astrocytes. Bypassing metabolically the adenosine deaminase defect by inosine supplementation was beneficial bioenergetically in vitro, increasing glycolytic energy output and leading to an increase in motor neuron survival in co-cultures with induced astrocytes. Inosine supplementation, in combination with modulation of the level of adenosine deaminase may represent a beneficial therapeutic approach to evaluate in patients with amyotrophic lateral sclerosis.


Asunto(s)
Adenosina Desaminasa/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Neuronas Motoras/metabolismo , Adenosina Desaminasa/fisiología , Adulto , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Astrocitos/metabolismo , Proteína C9orf72/metabolismo , Muerte Celular , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Progresión de la Enfermedad , Metabolismo Energético/fisiología , Femenino , Fibroblastos/metabolismo , Humanos , Inosina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Células Madre/metabolismo
4.
Hum Mol Genet ; 26(23): 4668-4679, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973175

RESUMEN

Defective axonal transport is an early neuropathological feature of amyotrophic lateral sclerosis (ALS). We have previously shown that ALS-associated mutations in Cu/Zn superoxide dismutase 1 (SOD1) impair axonal transport of mitochondria in motor neurons isolated from SOD1 G93A transgenic mice and in ALS mutant SOD1 transfected cortical neurons, but the underlying mechanisms remained unresolved. The outer mitochondrial membrane protein mitochondrial Rho GTPase 1 (Miro1) is a master regulator of mitochondrial axonal transport in response to cytosolic calcium (Ca2+) levels ([Ca2+]c) and mitochondrial damage. Ca2+ binding to Miro1 halts mitochondrial transport by modifying its interaction with kinesin-1 whereas mitochondrial damage induces Phosphatase and Tensin Homolog (PTEN)-induced Putative Kinase 1 (PINK1) and Parkin-dependent degradation of Miro1 and consequently stops transport. To identify the mechanism underlying impaired axonal transport of mitochondria in mutant SOD1-related ALS we investigated [Ca2+]c and Miro1 levels in ALS mutant SOD1 expressing neurons. We found that expression of ALS mutant SOD1 reduced the level of endogenous Miro1 but did not affect [Ca2+]c. ALS mutant SOD1 induced reductions in Miro1 levels were Parkin dependent. Moreover, both overexpression of Miro1 and ablation of PINK1 rescued the mitochondrial axonal transport deficit in ALS mutant SOD1-expressing cortical and motor neurons. Together these results provide evidence that ALS mutant SOD1 inhibits axonal transport of mitochondria by inducing PINK1/Parkin-dependent Miro1 degradation.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Transporte Axonal/fisiología , Proteínas Mitocondriales/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/genética , Animales , Axones/metabolismo , Calcio/metabolismo , Citosol/metabolismo , Modelos Animales de Enfermedad , Células HEK293 , Células HeLa , Humanos , Ratones Transgénicos , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Mutación , Proteínas Quinasas/metabolismo , Ratas
5.
Hum Mol Genet ; 26(6): 1133-1145, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28158451

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease, characterised by progressive failure of the neuromuscular system. A (G4C2)n repeat expansion in C9ORF72 is the most common genetic cause of ALS and frontotemporal dementia (FTD). To date, the balance of evidence indicates that the (G4C2)n repeat causes toxicity and neurodegeneration via a gain-of-toxic function mechanism; either through direct RNA toxicity or through the production of toxic aggregating dipeptide repeat proteins. Here, we have generated a stable and isogenic motor neuronal NSC34 cell model with inducible expression of a (G4C2)102 repeat, to investigate the gain-of-toxic function mechanisms. The expression of the (G4C2)102 repeat produces RNA foci and also undergoes RAN translation. In addition, the expression of the (G4C2)102 repeat shows cellular toxicity. Through comparison of transcriptomic data from the cellular model with laser-captured spinal motor neurons from C9ORF72-ALS cases, we also demonstrate that the PI3K/Akt cell survival signalling pathway is dysregulated in both systems. Furthermore, partial knockdown of Pten rescues the toxicity observed in the NSC34 (G4C2)102 cellular gain-of-toxic function model of C9ORF72-ALS. Our data indicate that PTEN may provide a potential therapeutic target to ameliorate toxic effects of the (G4C2)n repeat.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Expansión de las Repeticiones de ADN/genética , Demencia Frontotemporal/genética , Fosfohidrolasa PTEN/genética , Proteínas/genética , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72 , Línea Celular , Supervivencia Celular , Demencia Frontotemporal/patología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , ARN/genética
6.
EMBO Rep ; 17(9): 1326-42, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27418313

RESUMEN

Defective FUS metabolism is strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), but the mechanisms linking FUS to disease are not properly understood. However, many of the functions disrupted in ALS/FTD are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling is facilitated by close physical associations between the two organelles that are mediated by binding of the integral ER protein VAPB to the outer mitochondrial membrane protein PTPIP51, which act as molecular scaffolds to tether the two organelles. Here, we show that FUS disrupts the VAPB-PTPIP51 interaction and ER-mitochondria associations. These disruptions are accompanied by perturbation of Ca(2+) uptake by mitochondria following its release from ER stores, which is a physiological read-out of ER-mitochondria contacts. We also demonstrate that mitochondrial ATP production is impaired in FUS-expressing cells; mitochondrial ATP production is linked to Ca(2+) levels. Finally, we demonstrate that the FUS-induced reductions to ER-mitochondria associations and are linked to activation of glycogen synthase kinase-3ß (GSK-3ß), a kinase already strongly associated with ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Retículo Endoplásmico/metabolismo , Demencia Frontotemporal/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/ultraestructura , Activación Enzimática , Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Mitocondrias/ultraestructura , Mutación , Unión Proteica , Proteína FUS de Unión a ARN/genética
7.
Neurobiol Dis ; 105: 283-299, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28235672

RESUMEN

Intracellular trafficking of cargoes is an essential process to maintain the structure and function of all mammalian cell types, but especially of neurons because of their extreme axon/dendrite polarisation. Axonal transport mediates the movement of cargoes such as proteins, mRNA, lipids, membrane-bound vesicles and organelles that are mostly synthesised in the cell body and in doing so is responsible for their correct spatiotemporal distribution in the axon, for example at specialised sites such as nodes of Ranvier and synaptic terminals. In addition, axonal transport maintains the essential long-distance communication between the cell body and synaptic terminals that allows neurons to react to their surroundings via trafficking of for example signalling endosomes. Axonal transport defects are a common observation in a variety of neurodegenerative diseases, and mutations in components of the axonal transport machinery have unequivocally shown that impaired axonal transport can cause neurodegeneration (reviewed in El-Kadi et al., 2007, De Vos et al., 2008; Millecamps and Julien, 2013). Here we review our current understanding of axonal transport defects and the role they play in motor neuron diseases (MNDs) with a specific focus on the most common form of MND, amyotrophic lateral sclerosis (ALS).


Asunto(s)
Transporte Axonal/fisiología , Enfermedad de la Neurona Motora/fisiopatología , Neurobiología , Investigación Biomédica Traslacional/métodos , Animales , Humanos
8.
Neurobiol Dis ; 85: 1-10, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26459111

RESUMEN

Expression of the frontotemporal dementia-related tau mutation, P301L, at physiological levels in adult mouse brain (KI-P301L mice) results in overt hypophosphorylation of tau and age-dependent alterations in axonal mitochondrial transport in peripheral nerves. To determine the effects of P301L tau expression in the central nervous system, we examined the kinetics of mitochondrial axonal transport and tau phosphorylation in primary cortical neurons from P301L knock-in (KI-P301L) mice. We observed a significant 50% reduction in the number of mitochondria in the axons of cortical neurons cultured from KI-P301L mice compared to wild-type neurons. Expression of murine P301L tau did not change the speed, direction of travel or likelihood of movement of mitochondria. Notably, the angle that defines the orientation of the mitochondria in the axon, and the volume of individual moving mitochondria, were significantly increased in neurons expressing P301L tau. We found that murine tau phosphorylation in KI-P301L mouse neurons was diminished and the ability of P301L tau to bind to microtubules was also reduced compared to tau in wild-type neurons. The P301L mutation did not influence the ability of murine tau to associate with membranes in cortical neurons or in adult mouse brain. We conclude that P301L tau is associated with mitochondrial changes and causes an early reduction in murine tau phosphorylation in neurons coupled with impaired microtubule binding of tau. These results support the association of mutant tau with detrimental effects on mitochondria and will be of significance for the pathogenesis of tauopathies.


Asunto(s)
Axones/metabolismo , Mitocondrias/metabolismo , Proteínas tau/metabolismo , Animales , Axones/patología , Membrana Celular/metabolismo , Membrana Celular/patología , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Citosol/metabolismo , Citosol/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Microtúbulos/metabolismo , Mitocondrias/patología , Mutación , Fosforilación , Ratas , Proteínas tau/genética
9.
Hum Mol Genet ; 21(9): 1979-88, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22258555

RESUMEN

A proline-to-serine substitution at position 56 in the gene encoding vesicle-associated membrane protein-associated protein B (VAPB; VAPBP56S) causes some dominantly inherited familial forms of motor neuron disease, including amyotrophic lateral sclerosis (ALS) type-8. Here, we show that expression of ALS mutant VAPBP56S but not wild-type VAPB in neurons selectively disrupts anterograde axonal transport of mitochondria. VAPBP56S-induced disruption of mitochondrial transport involved reductions in the frequency, velocity and persistence of anterograde mitochondrial movement. Anterograde axonal transport of mitochondria is mediated by the microtubule-based molecular motor kinesin-1. Attachment of kinesin-1 to mitochondria involves the outer mitochondrial membrane protein mitochondrial Rho GTPase-1 (Miro1) which acts as a sensor for cytosolic calcium levels ([Ca(2+)]c); elevated [Ca(2+)]c disrupts mitochondrial transport via an effect on Miro1. To gain insight into the mechanisms underlying the VAPBP56S effect on mitochondrial transport, we monitored [Ca(2+)]c levels in VAPBP56S-expressing neurons. Expression of VAPBP56S but not VAPB increased resting [Ca(2+)]c and this was associated with a reduction in the amounts of tubulin but not kinesin-1 that were associated with Miro1. Moreover, expression of a Ca(2+) insensitive mutant of Miro1 rescued defective mitochondrial axonal transport and restored the amounts of tubulin associated with the Miro1/kinesin-1 complex to normal in VAPBP56S-expressing cells. Our results suggest that ALS mutant VAPBP56S perturbs anterograde mitochondrial axonal transport by disrupting Ca(2+) homeostasis and effecting the Miro1/kinesin-1 interaction with tubulin.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Transporte Axonal/genética , Transporte Axonal/fisiología , Calcio/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Neuronas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Células HEK293 , Homeostasis , Humanos , Cinesinas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Movimiento , Mutagénesis Sitio-Dirigida , Plásmidos/genética , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imagen de Lapso de Tiempo , Transfección , Tubulina (Proteína)/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
10.
Hum Mol Genet ; 21(6): 1299-311, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22131369

RESUMEN

A proline to serine substitution at position 56 in the gene encoding vesicle-associated membrane protein-associated protein B (VAPB) causes some dominantly inherited familial forms of motor neuron disease including amyotrophic lateral sclerosis (ALS) type-8. VAPB is an integral endoplasmic reticulum (ER) protein whose amino-terminus projects into the cytosol. Overexpression of ALS mutant VAPBP56S disrupts ER structure but the mechanisms by which it induces disease are not properly understood. Here we show that VAPB interacts with the outer mitochondrial membrane protein, protein tyrosine phosphatase-interacting protein 51 (PTPIP51). ER and mitochondria are both stores for intracellular calcium (Ca(2+)) and Ca(2+) exchange between these organelles occurs at regions of ER that are closely apposed to mitochondria. These are termed mitochondria-associated membranes (MAM). We demonstrate that VAPB is a MAM protein and that loss of either VAPB or PTPIP51 perturbs uptake of Ca(2+) by mitochondria following release from ER stores. Finally, we demonstrate that VAPBP56S has altered binding to PTPIP51 and increases Ca(2+) uptake by mitochondria following release from ER stores. Damage to ER, mitochondria and Ca(2+) homeostasis are all seen in ALS and we discuss the implications of our findings in this context.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Calcio/metabolismo , Homeostasis/fisiología , Proteínas Mitocondriales/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Western Blotting , Células Cultivadas , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Proteínas Tirosina Fosfatasas/genética , Conejos , Ratas , Técnicas del Sistema de Dos Híbridos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/inmunología
11.
J Cell Sci ; 124(Pt 7): 1032-42, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21385839

RESUMEN

Kinesin light chain 1 (KLC1) binds to the intracellular cytoplasmic domain of the type-1 membrane-spanning protein calsyntenin-1 (also known as alcadein-α) to mediate transport of a subset of vesicles. Here, we identify serine 460 in KLC1 (KLC1ser460) as a phosphorylation site and show that mutation of KLC1ser460 influences the binding of KLC1 to calsyntenin-1. Mutation of KLC1ser460 to an alanine residue, to preclude phosphorylation, increased the binding of calsyntenin-1, whereas mutation to an aspartate residue, to mimic permanent phosphorylation, reduced the binding. Mutation of KLC1ser460 did not affect the interaction of KLC1 with four other known binding partners: huntingtin-associated protein 1 isoform A (HAP1A), collapsin response mediator protein-2 (CRMP2), c-Jun N-terminal kinase-interacting protein-1 (JIP1) and kinase-D-interacting substrate of 220 kDa (Kidins220). KLC1ser460 is a predicted mitogen-activated protein kinase (MAPK) target site, and we show that extracellular-signal-regulated kinase (ERK) phosphorylates this residue in vitro. We also demonstrate that inhibition of ERK promotes binding of calsyntenin-1 to KLC1. Finally, we show that expression of the KLC1ser460 mutant proteins influences calsyntenin-1 distribution and transport in cultured cells. Thus, phosphorylation of KLC1ser460 represents a mechanism for selectively regulating the binding and trafficking of calsyntenin-1.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Células CHO , Proteínas de Unión al Calcio/genética , Línea Celular , Cricetinae , Cricetulus , Humanos , Cinesinas , Proteínas Asociadas a Microtúbulos/genética , Fosforilación , Unión Proteica , Transporte de Proteínas
12.
Sci Transl Med ; 15(685): eabo3823, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857431

RESUMEN

Hexanucleotide repeat expansions in C9ORF72 are the most common genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Studies have shown that the hexanucleotide expansions cause the noncanonical translation of C9ORF72 transcripts into neurotoxic dipeptide repeat proteins (DPRs) that contribute to neurodegeneration. We show that a cell-penetrant peptide blocked the nuclear export of C9ORF72-repeat transcripts in HEK293T cells by competing with the interaction between SR-rich splicing factor 1 (SRSF1) and nuclear export factor 1 (NXF1). The cell-penetrant peptide also blocked the translation of toxic DPRs in neurons differentiated from induced neural progenitor cells (iNPCs), which were derived from individuals carrying C9ORF72-linked ALS mutations. This peptide also increased survival of iNPC-differentiated C9ORF72-ALS motor neurons cocultured with astrocytes. Oral administration of the cell-penetrant peptide reduced DPR translation and rescued locomotor deficits in a Drosophila model of mutant C9ORF72-mediated ALS/FTD. Intrathecal injection of this peptide into the brains of ALS/FTD mice carrying a C9ORF72 mutation resulted in reduced expression of DPRs in mouse brains. These findings demonstrate that disrupting the production of DPRs in cellular and animal models of ALS/FTD might be a strategy to ameliorate neurodegeneration in these diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Animales , Ratones , Dipéptidos , Proteína C9orf72 , Transporte Activo de Núcleo Celular , Células HEK293 , Péptidos , Neuronas Motoras , ARN , Factores de Empalme Serina-Arginina
13.
Front Cell Neurosci ; 16: 1061559, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619668

RESUMEN

Disruption to protein homeostasis caused by lysosomal dysfunction and associated impairment of autophagy is a prominent pathology in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). The most common genetic cause of ALS/FTD is a G4C2 hexanucleotide repeat expansion in C9orf72 (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of G4C2 repeat transcripts gives rise to dipeptide repeat (DPR) proteins that have been shown to be toxic and may contribute to disease etiology. Genetic variants in TMEM106B have been associated with frontotemporal lobar degeneration with TDP-43 pathology and disease progression in C9ALS/FTD. TMEM106B encodes a lysosomal transmembrane protein of unknown function that is involved in various aspects of lysosomal biology. How TMEM106B variants affect C9ALS/FTD is not well understood but has been linked to changes in TMEM106B protein levels. Here, we investigated TMEM106B function in the context of C9ALS/FTD DPR pathology. We report that knockdown of TMEM106B expression exacerbates the accumulation of C9ALS/FTD-associated cytotoxic DPR proteins in cell models expressing RAN-translated or AUG-driven DPRs as well as in C9ALS/FTD-derived iAstrocytes with an endogenous G4C2 expansion by impairing autophagy. Loss of TMEM106B caused a block late in autophagy by disrupting autophagosome to autolysosome maturation which coincided with impaired lysosomal acidification, reduced cathepsin activity, and juxtanuclear clustering of lysosomes. Lysosomal clustering required Rab7A and coincided with reduced Arl8b-mediated anterograde transport of lysosomes to the cell periphery. Increasing Arl8b activity in TMEM106B-deficient cells not only restored the distribution of lysosomes, but also fully rescued autophagy and DPR protein accumulation. Thus, we identified a novel function of TMEM106B in autophagosome maturation via Arl8b. Our findings indicate that TMEM106B variants may modify C9ALS/FTD by regulating autophagic clearance of DPR proteins. Caution should therefore be taken when considering modifying TMEM106B expression levels as a therapeutic approach in ALS/FTD.

14.
Life Sci Alliance ; 5(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35568435

RESUMEN

Dipeptide repeat (DPR) proteins are aggregation-prone polypeptides encoded by the pathogenic GGGGCC repeat expansion in the C9ORF72 gene, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. In this study, we focus on the role of poly-GA DPRs in disease spread. We demonstrate that recombinant poly-GA oligomers can directly convert into solid-like aggregates and form characteristic ß-sheet fibrils in vitro. To dissect the process of cell-to-cell DPR transmission, we closely follow the fate of poly-GA DPRs in either their oligomeric or fibrillized form after administration in the cell culture medium. We observe that poly-GA DPRs are taken up via dynamin-dependent and -independent endocytosis, eventually converging at the lysosomal compartment and leading to axonal swellings in neurons. We then use a co-culture system to demonstrate astrocyte-to-motor neuron DPR propagation, showing that astrocytes may internalise and release aberrant peptides in disease pathogenesis. Overall, our results shed light on the mechanisms of poly-GA cellular uptake and propagation, suggesting lysosomal impairment as a possible feature underlying the cellular pathogenicity of these DPR species.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Dipéptidos , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Humanos , Neuronas Motoras/metabolismo
15.
BMC Neurosci ; 12: 91, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21943126

RESUMEN

BACKGROUND: Overexpression of mutant copper/zinc superoxide dismutase (SOD1) in rodents has provided useful models for studying the pathogenesis of amyotrophic lateral sclerosis (ALS). Microglia have been shown to contribute to ALS disease progression in these models, although the mechanism of this contribution remains to be elucidated. Here, we present the first evidence of the effects of overexpression of mutant (TG G93A) and wild type (TG WT) human SOD1 transgenes on a set of functional properties of microglia relevant to ALS progression, including expression of integrin ß-1, spreading and migration, phagocytosis of apoptotic neuronal cell debris, and intracellular calcium changes in response to an inflammatory stimulus. RESULTS: TG SOD1 G93A but not TG SOD1 WT microglia had lower expression levels of the cell adhesion molecule subunit integrin ß-1 than their NTG control cells [NTG (G93A) and NTG (WT), respectively, 92.8 ± 2.8% on TG G93A, 92.0 ± 6.6% on TG WT, 100.0 ± 1.6% on NTG (G93A), and 100.0 ± 2.7% on NTG (WT) cells], resulting in decreased spreading ability, with no effect on ability to migrate. Both TG G93A and TG WT microglia had reduced capacity to phagocytose apoptotic neuronal cell debris (13.0 ± 1.3% for TG G93A, 16.5 ± 1.9% for TG WT, 28.6 ± 1.8% for NTG (G93A), and 26.9 ± 2.8% for NTG (WT) cells). Extracellular stimulation of microglia with ATP resulted in smaller increase in intracellular free calcium in TG G93A and TG WT microglia relative to NTG controls (0.28 ± 0.02 µM for TG G93A, 0.24 ± 0.03 µM for TG WT, 0.39 ± 0.03 µM for NTG (G93A), and 0.37 ± 0.05 µM for NTG (WT) microglia). CONCLUSIONS: These findings indicate that, under resting conditions, microglia from mutant SOD1 transgenic mice have a reduced capacity to elicit physiological responses following tissue disturbances and that higher levels of stimulatory signals, and/or prolonged stimulation may be necessary to initiate these responses. Overall, resting mutant SOD1-overexpressing microglia may have reduced capacity to function as sensors of disturbed tissue/cellular homeostasis in the CNS and thus have reduced neuroprotective function.


Asunto(s)
Microglía/enzimología , Microglía/patología , Fármacos Neuroprotectores/antagonistas & inhibidores , Fase de Descanso del Ciclo Celular , Superóxido Dismutasa/antagonistas & inhibidores , Animales , Animales Recién Nacidos , Movimiento Celular/genética , Homeostasis/genética , Humanos , Ratones , Ratones Transgénicos , Microglía/fisiología , Mutación , Inhibición Neural/genética , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fagocitosis/genética , Cultivo Primario de Células , Fase de Descanso del Ciclo Celular/genética , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
16.
J Neurochem ; 110(1): 34-44, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19453301

RESUMEN

Mutations in spastin are the most common cause of hereditary spastic paraplegia (HSP) but the mechanisms by which mutant spastin induces disease are not clear. Spastin functions to regulate microtubule organisation, and because of the essential role of microtubules in axonal transport, this has led to the suggestion that defects in axonal transport may underlie at least part of the disease process in HSP. However, as yet there is no direct evidence to support this notion. Here we analysed axonal transport in a novel mouse model of spastin-induced HSP that involves a pathogenic splice site mutation, which leads to a loss of spastin protein. A mutation located within the same splice site has been previously described in HSP. Spastin mice develop gait abnormalities that correlate with phenotypes seen in HSP patients and also axonal swellings containing cytoskeletal proteins, mitochondria and the amyloid precursor protein (APP). Pathological analyses of human HSP cases caused by spastin mutations revealed the presence of similar axonal swellings. To determine whether mutant spastin influenced axonal transport we quantified transport of two cargoes, mitochondria and APP-containing membrane bound organelles, in neurons from mutant spastin and control mice, using time-lapse microscopy. We found that mutant spastin perturbs anterograde transport of both cargoes. In neurons with axonal swellings we found that the mitochondrial axonal transport defects were exacerbated; distal to axonal swellings both anterograde and retrograde transport were severely reduced. These results strongly support a direct role for defective axonal transport in the pathogenesis of HSP because of spastin mutation.


Asunto(s)
Adenosina Trifosfatasas/genética , Transporte Axonal/genética , Neuronas Motoras/metabolismo , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Médula Espinal/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Axones/metabolismo , Axones/patología , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Cojera Animal/genética , Cojera Animal/metabolismo , Cojera Animal/patología , Ratones , Ratones Mutantes Neurológicos , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/patología , Mitocondrias/metabolismo , Neuronas Motoras/patología , Mutación/genética , Paraplejía Espástica Hereditaria/fisiopatología , Espastina , Médula Espinal/patología , Médula Espinal/fisiopatología , Degeneración Walleriana/genética , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología
17.
Neurosci Lett ; 454(2): 161-4, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19429076

RESUMEN

Riluzole is the only drug approved for the treatment of amyotrophic lateral sclerosis (ALS) but its precise mode of action is not properly understood. Damage to axonal transport of neurofilaments is believed to be part of the pathogenic mechanism in ALS and this has been linked to defective glutamate handling and increased phosphorylation of neurofilament side-arm domains. Here, we show that riluzole protects against glutamate-induced slowing of neurofilament transport. Protection is associated with decreased neurofilament side-arm phosphorylation and inhibition of the activities of two neurofilament kinases, ERK and p38 that are activated in ALS. Thus, the anti-glutamatergic properties of riluzole include protection against glutamate-induced changes to neurofilament phosphorylation and transport.


Asunto(s)
Transporte Axonal/efectos de los fármacos , Axones/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/toxicidad , Proteínas de Neurofilamentos/metabolismo , Fármacos Neuroprotectores/farmacología , Riluzol/farmacología , Análisis de Varianza , Animales , Axones/fisiología , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Inmunohistoquímica , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fosforilación/efectos de los fármacos , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Neurosci Lett ; 710: 132933, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28669745

RESUMEN

Mitochondria are unique organelles that are essential for a variety of cellular processes including energy metabolism, calcium homeostasis, lipid biosynthesis, and apoptosis. Mitochondrial dysfunction is a prevalent feature of many neurodegenerative diseases including motor neuron disorders such as amyotrophic lateral sclerosis (ALS). Disruption of mitochondrial structure, dynamics, bioenergetics and calcium buffering has been extensively reported in ALS patients and model systems and has been suggested to be directly involved in disease pathogenesis. Here we review the alterations in mitochondrial parameters in ALS and examine the common pathways to dysfunction.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/patología , Mitocondrias/patología , Animales , Apoptosis , Transporte Axonal , Calcio/metabolismo , Metabolismo Energético , Humanos , Mitofagia , Estrés Oxidativo , Transducción de Señal , Superóxido Dismutasa-1/metabolismo
19.
Curr Biol ; 15(7): 678-83, 2005 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-15823542

RESUMEN

Mitochondria display a variety of shapes, ranging from small and spherical or the classical tubular shape to extended networks. Shape transitions occur frequently and include fusion, fission, and branching. It was reported that some mitochondrial shape transitions are developmentally regulated, whereas others were linked to disease or apoptosis. However, if and how mitochondrial function controls mitochondrial shape through regulation of mitochondrial fission and fusion is unclear. Here, we show that inhibitors of electron transport, ATP synthase, or the permeability transition pore (mtPTP) induced reversible mitochondrial fission. Mitochondrial fission depended on dynamin-related protein 1 (DRP1) and F-actin: Disruption of F-actin attenuated fission and recruitment of DRP1 to mitochondria. In contrast, uncoupling of electron transport and oxidative phosphorylation caused mitochondria to adopt a distinct disk shape. This shape change was independent of the cytoskeleton and DRP1 and was most likely caused by swelling. Thus, disruption of mitochondrial function rapidly and reversibly altered mitochondrial shape either by activation of DRP1-dependent fission or by swelling, indicating a close relationship between mitochondrial fission, shape, and function. Furthermore, our results suggest that the actin cytoskeleton is involved in mitochondrial fission by facilitating mitochondrial recruitment of DRP1.


Asunto(s)
Actinas/metabolismo , Dinaminas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/fisiología , Animales , Western Blotting , Células Cultivadas , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente , Proteínas Luminiscentes , Ratones , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Dilatación Mitocondrial/fisiología , Proteína Fluorescente Roja
20.
Small GTPases ; 9(5): 399-408, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-27768524

RESUMEN

A GGGGCC hexanucleotide repeat expansion in the first intron of the C9orf72 gene is the most common genetic defect associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9ALS/FTD). Haploinsufficiency and a resulting loss of C9orf72 protein function has been suggested as a possible pathogenic mechanism in C9ALS/FTD. C9ALS/FTD patients exhibit specific ubiquitin and p62/sequestosome-1 positive but TDP-43 negative inclusions in the cerebellum and hippocampus, indicating possible autophagy deficits in these patients. In a recent study, we investigated this possibility by reducing expression of C9orf72 in cell lines and primary neurons and found that C9orf72 regulates the initiation of autophagy. C9orf72 interacts with Rab1a, preferentially in its GTP-bound state, as well as the ULK1 autophagy initiation complex. As an effector of Rab1a, C9orf72 controls the Rab1a-dependent trafficking of the ULK1 initiation complex prior to autophagosome formation. In line with this function, C9orf72 depletion in cell lines and primary neurons caused the accumulation of p62/sequestosome-1-positive inclusions. In support of a role in disease pathogenesis, C9ALS/FTD patient-derived iNeurons showed markedly reduced levels of autophagy. In this Commentary we summarise recent findings supporting the key role of C9orf72 in Rab GTPase-dependent regulation of autophagy and discuss autophagy dysregulation as a pathogenic mechanism in ALS/FTD.


Asunto(s)
Autofagia , Proteína C9orf72/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA