Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genet Med ; 26(5): 101086, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38288684

RESUMEN

PURPOSE: Cerebrotendinous xanthomatosis (CTX) is a rare, autosomal recessive bile acid synthesis disorder. Biallelic pathogenic variants in CYP27A1, encoding for sterol 27-hydroxylase, impair cholic acid (CA) and chenodeoxycholic acid (CDCA) synthesis and lead to accumulation of cholestanol and C27 bile alcohols. Treatment with CDCA decreases the accumulation of these harmful metabolites and slows disease progression. Currently, CDCA is contraindicated for use during pregnancy based on animal studies that showed that high-dose CDCA may cause fetal harm when administered to pregnant animals. Data regarding the safety of CDCA treatment in humans are lacking. METHODS: We present a case series of 19 pregnancies in 9 women with CTX who either received CDCA treatment throughout pregnancy or did not. RESULTS: In 11 pregnancies where mothers continued CDCA treatment, no complications were reported, and newborns were born at or near full term, with normal birth weight and Apgar scores. In 8 pregnancies where mothers did not receive CDCA, 2 newborns experienced elevated bilirubin soon after birth. One woman who stopped treatment during her pregnancy deteriorated neurologically while off treatment. CONCLUSION: The data we present support the benefit of continued CDCA treatment in pregnant women with CTX for both the affected women and their offspring.


Asunto(s)
Ácido Quenodesoxicólico , Xantomatosis Cerebrotendinosa , Humanos , Femenino , Ácido Quenodesoxicólico/uso terapéutico , Xantomatosis Cerebrotendinosa/tratamiento farmacológico , Xantomatosis Cerebrotendinosa/genética , Embarazo , Adulto , Colestanotriol 26-Monooxigenasa/genética , Complicaciones del Embarazo/tratamiento farmacológico , Complicaciones del Embarazo/genética , Recién Nacido
2.
Curr Opin Lipidol ; 32(2): 123-131, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33630770

RESUMEN

PURPOSE OF REVIEW: Cerebrotendinous xanthomatosis (CTX) is a rare genetic lipid storage disorder with highly pleomorphic clinical phenotype. Complications of this disease can be devastating and may include severe cognitive impairment and dementia in later stages. Disease progression can be prevented or stabilized by bile acid replacement therapy, although a subset of patients with advanced disease continue to deteriorate despite therapy. RECENT FINDINGS: Delayed diagnosis of CTX continues to impede effective treatment. A clinical diagnostic algorithm for CTX was developed that can decrease the age of diagnosis of CTX. The strategy of screening children with bilateral juvenile cataracts for CTX also improved diagnosis, as this group had a 500-fold higher-rate of CTX than the general population. Improved diagnosis of CTX is critical, as patients treated early in the course of the disease have significantly better outcomes compared with those treated later. More sensitive and specific biochemical testing for CTX has been developed that is potentially more informative than blood cholestanol to assess treatment efficacy and medication compliance in CTX. SUMMARY: Because we are recognizing more severe presentations of CTX in infants and children, and delayed diagnosis and treatment worsens the prognosis, CTX is an excellent candidate disorder for newborn screening using recently reported methods for newborn dried bloodspot analysis.


Asunto(s)
Xantomatosis Cerebrotendinosa , Ácidos y Sales Biliares/uso terapéutico , Niño , Colestanol , Diagnóstico Tardío , Humanos , Recién Nacido , Tamizaje Neonatal , Fenotipo , Xantomatosis Cerebrotendinosa/diagnóstico
3.
J Lipid Res ; 62: 100078, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33891937

RESUMEN

Cerebrotendinous xanthomatosis (CTX) is caused by autosomal recessive loss-of-function mutations in CYP27A1, a gene encoding cytochrome p450 oxidase essential for bile acid synthesis, resulting in altered bile acid and lipid metabolism. Here, we aimed to identify metabolic aberrations that drive ongoing neurodegeneration in some patients with CTX despite chenodeoxycholic acid (CDCA) supplementation, the standard treatment in CTX. Using chromatographic separation techniques coupled to mass spectrometry, we analyzed 26 sterol metabolites in serum and cerebrospinal fluid (CSF) of patients with CTX and in one CTX brain. Comparing samples of drug naive patients to patients treated with CDCA and healthy controls, we identified 7α,12α-dihydroxycholest-4-en-3-one as the most prominently elevated metabolite in serum and CSF of drug naive patients. CDCA treatment substantially reduced or even normalized levels of all metabolites increased in untreated patients with CTX. Independent of CDCA treatment, metabolites of the 27-hydroxylation pathway were nearly absent in all patients with CTX. 27-hydroxylated metabolites accounted for ∼45% of total free sterol content in CSF of healthy controls but <2% in patients with CTX. Metabolic changes in brain tissue corresponded well with findings in CSF. Interestingly, 7α,12α-dihydroxycholest-4-en-3-one and 5α-cholestanol did not exert toxicity in neuronal cell culture. In conclusion, we propose that increased 7α,12α-dihydroxycholest-4-en-3-one and lack of 27-hydroxycholesterol may be highly sensitive metabolic biomarkers of CTX. As CDCA cannot reliably prevent disease progression despite reduction of most accumulated metabolites, supplementation of 27-hydroxylated bile acid intermediates or replacement of CYP27A1 might be required to counter neurodegeneration in patients with progressive disease despite CDCA treatment.


Asunto(s)
Xantomatosis Cerebrotendinosa
4.
Genet Med ; 22(10): 1606-1612, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32523054

RESUMEN

PURPOSE: Cerebrotendinous xanthomatosis (CTX) is a treatable hereditary disorder caused by the deficiency of sterol 27-hydroxylase, which is encoded by the CYP27A1 gene. Different newborn screening biomarkers for CTX have been described, including 7α,12α-dihydroxy-4-cholesten-3-one (7α12αC4), 5ß-cholestane-3α,7α,12α,25-tetrol glucuronide (GlcA-tetrol), the ratio of GlcA-tetrol to tauro-chenodeoxycholic acid (t-CDCA) (GlcA-tetrol/t-CDCA), and the ratio of tauro-trihydroxycholestanoic acid (t-THCA) to GlcA-tetrol (t-THCA/GlcA-tetrol). We set out to evaluate these screening methods in a research study using over 32,000 newborn dried blood spots (DBS). METHODS: Metabolites were extracted from DBS with methanol containing internal standard, which was then quantified by ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). RESULTS: The measurement of 7α12αC4 was complicated by isobaric interferences and was discontinued. A total of 32,737 newborns were screened based on the GlcA-tetrol concentration in DBS. GlcA-tetrol/t-CDCA and t-THCA/GlcA-tetrol ratios were also calculated. Newborns displaying both elevated GlcA-tetrol and GlcA-tetrol/t-CDCA ratio were considered to be screen positives. The t-THCA/GlcA-tetrol ratio was used to further distinguish CTX screen positives from Zellweger Spectrum Disorder (ZSD) screen positives. Only one newborn displayed both elevated GlcA-tetrol concentration in DBS and a typical CTX biochemical profile. This newborn was interpreted as a CTX-affected patient as CYP27A1 gene sequencing identified two known pathogenic variants. CONCLUSION: The results indicate that both GlcA-tetrol and the GlcA-tetrol/t-CDCA ratio are excellent CTX biomarkers suitable for newborn screening. By characterizing the relationship of GlcA-tetrol, t-CDCA, and t-THCA as secondary markers, 100% assay specificity can be achieved.


Asunto(s)
Xantomatosis Cerebrotendinosa , Biomarcadores , Cromatografía Liquida , Humanos , Recién Nacido , Tamizaje Neonatal , Espectrometría de Masas en Tándem , Xantomatosis Cerebrotendinosa/diagnóstico , Xantomatosis Cerebrotendinosa/genética
5.
J Lipid Res ; 59(11): 2214-2222, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30135217

RESUMEN

Cerebrotendinous xanthomatosis (CTX) is a progressive metabolic leukodystrophy. Early identification and treatment from birth onward effectively provides a functional cure, but diagnosis is often delayed. We conducted a pilot study using a two-tier test for CTX to screen archived newborn dried bloodspots (DBSs) or samples collected prospectively from a high-risk Israeli newborn population. All DBS samples were analyzed with flow injection analysis (FIA)-MS/MS, and 5% of samples were analyzed with LC-MS/MS. Consecutively collected samples were analyzed to identify CTX-causing founder genetic variants common among Druze and Moroccan Jewish populations. First-tier analysis with FIA-MS/MS provided 100% sensitivity to detect CTX-positive newborn DBSs, with a low false-positive rate (0.1-0.5%). LC-MS/MS, as a second-tier test, provided 100% sensitivity to detect CTX-positive newborn DBSs with a false-positive rate of 0% (100% specificity). In addition, 5ß-cholestane-3α,7α,12α,25-tetrol-3-O-ß-D-glucuronide was identified as the predominant bile-alcohol disease marker present in CTX-positive newborn DBSs. In newborns identifying as Druze, a 1:30 carriership frequency was determined for the c.355delC CYP27A1 gene variant, providing an estimated disease prevalence of 1:3,600 in this population. These data support the feasibility of two-tier DBS screening for CTX in newborns and set the stage for large-scale prospective pilot studies.


Asunto(s)
Tamizaje Neonatal/métodos , Xantomatosis Cerebrotendinosa/diagnóstico , Cromatografía Liquida , Humanos , Recién Nacido , Estudios Prospectivos , Espectrometría de Masas en Tándem
6.
J Lipid Res ; 58(5): 1002-1007, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28314860

RESUMEN

Cerebrotendinous xanthomatosis (CTX) is a treatable neurodegenerative metabolic disorder of bile acid synthesis in which symptoms can be prevented if treatment with chenodeoxycholic acid supplementation is initiated early in life, making CTX an excellent candidate for newborn screening. We developed a new dried blood spot (DBS) screening assay for this disorder on the basis of different ratios between the accumulating cholestanetetrol glucuronide (tetrol) and specific bile acids/bile acid intermediates, without the need for derivatization. A quarter-inch DBS punch was extracted with methanol, internal standards were added, and after concentration the extract was injected into the tandem mass spectrometer using a 2 min flow injection analysis for which specific transitions were measured for cholestanetetrol glucuronide, taurochenodeoxycholic acid (t-CDCA), and taurotrihydroxycholestanoic acid (t-THCA). A proof-of-principle experiment was performed using 217 Guthrie cards from healthy term/preterm newborns, CTX patients, and Zellweger patients. Using two calculated biomarkers, tetrol:t-CDCA and t-THCA:tetrol, this straightforward method achieved an excellent separation between DBSs of CTX patients and those of controls, Zellweger patients, and newborns with cholestasis. The results of this small pilot study indicate that the tetrol:t-CDCA ratio is an excellent derived biomarker for CTX that has the potential to be used in neonatal screening programs.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Pruebas con Sangre Seca/métodos , Glucurónidos/metabolismo , Tamizaje Neonatal/métodos , Xantomatosis Cerebrotendinosa/sangre , Xantomatosis Cerebrotendinosa/diagnóstico , Adolescente , Niño , Preescolar , Colestasis/complicaciones , Femenino , Humanos , Recién Nacido , Masculino , Xantomatosis Cerebrotendinosa/complicaciones , Xantomatosis Cerebrotendinosa/metabolismo
7.
Hum Mol Genet ; 24(10): 2808-25, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25652406

RESUMEN

NSDHL is a 3ß-hydroxysterol dehydrogenase that is involved in the removal of two C-4 methyl groups in one of the later steps of cholesterol biosynthesis. Mutations in the gene encoding the enzyme are responsible for the X-linked, male lethal mouse mutations bare patches and striated, as well as most cases of human CHILD syndrome. Rare, hypomorphic NSDHL mutations are also associated with X-linked intellectual disability in males with CK syndrome. Since hemizygous male mice with Nsdhl mutations die by midgestation, we generated a conditional targeted Nsdhl mutation (Nsdhl(tm1.1Hrm)) to investigate the essential role of cholesterol in the early postnatal CNS. Ablation of Nsdhl in radial glia using GFAP-cre resulted in live-born, normal appearing affected male pups. However, the pups develop overt ataxia by postnatal day 8-10 and die shortly thereafter. Histological abnormalities include progressive loss of cortical and hippocampal neurons, as well as deficits in the proliferation and migration of cerebellar granule precursors and subsequent massive apoptosis of the cerebellar cortex. We replicated the granule cell precursor proliferation defect in vitro and demonstrate that it results from defective signaling by SHH. Furthermore, this defect is almost completely rescued by supplementation of the culture media with exogenous cholesterol, while methylsterol accumulation above the enzymatic block appears to be associated with increased cell death. These data support the absolute requirement for cholesterol synthesis in situ once the blood-brain-barrier forms and cholesterol transport to the fetus is abolished. They further emphasize the complex ramifications of cholesterogenic enzyme deficiency on cellular metabolism.


Asunto(s)
3-Hidroxiesteroide Deshidrogenasas/genética , Corteza Cerebelosa/crecimiento & desarrollo , Colesterol/fisiología , Proteínas Hedgehog/fisiología , Transducción de Señal , Alelos , Animales , Corteza Cerebelosa/fisiopatología , Colesterol/biosíntesis , Femenino , Masculino , Ratones , Ratones Transgénicos , Mutación , Células-Madre Neurales , Neuronas/fisiología
8.
J Pediatr ; 188: 198-204.e1, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28625503

RESUMEN

OBJECTIVES: To assess the association between biomarkers of thyroid status and 5α-stanols in patients with sitosterolemia treated with ezetimibe (EZE). STUDY DESIGN: Eight patients with sitosterolemia (16-56 years of age) were studied during 14 weeks off EZE therapy and 14 weeks on EZE (10 mg/day). Serum thyroid biomarkers (free triiodothyronine [FT3], free thyroxine [FT4], FT3/FT4 ratio, thyroid-stimulating hormone), 5α-stanols (sitostanol and cholestanol), and cholestanol precursors (total cholesterol and its synthesis marker lathosterol, and 7α-hydroxy-4-cholesten-3-one cholestenol) were measured at baseline and during the 14 weeks off EZE and on EZE. RESULTS: EZE increased FT3/FT4 (10% ± 4%; P = .02). EZE reduced plasma and red blood cells sitostanol (-38% ± 6% and -20% ± 4%; all P < .05) and cholestanol (-18% ± 6% and -13% ± 3%; all P < .05). The change in plasma cholestanol level on EZE inversely correlated with the change in FT3/FT4 (r = -0.86; P = .01). EZE lowered total cholesterol (P < .0001) and did not affect 7α-hydroxy-4-cholesten-3-one cholestanol. EZE increased (P < .0001) lathosterol initially, but the level was not sustained, resulting in similar levels at week 14 off EZE and on EZE. CONCLUSION: In patients with STSL, 5α-stanols levels might be associated with thyroid function. EZE reduces circulating 5α-stanols while increasing FT3/FT4, implying increased conversion of T4 to T3, thus possibly improving thyroid hormone status. TRIAL REGISTRATION: ClinicalTrials.govNCT01584206.


Asunto(s)
Anticolesterolemiantes/uso terapéutico , Ezetimiba/uso terapéutico , Hipercolesterolemia/sangre , Hipercolesterolemia/tratamiento farmacológico , Enfermedades Intestinales/sangre , Enfermedades Intestinales/tratamiento farmacológico , Errores Innatos del Metabolismo Lipídico/sangre , Errores Innatos del Metabolismo Lipídico/tratamiento farmacológico , Fitosteroles/efectos adversos , Adolescente , Adulto , Colestanol/sangre , Colestenonas/sangre , Colesterol/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fitosteroles/sangre , Sitoesteroles/sangre , Tirotropina/sangre , Tiroxina/sangre , Triyodotironina/sangre , Adulto Joven
9.
J Lipid Res ; 55(1): 146-54, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24186955

RESUMEN

Cerebrotendinous xanthomatosis (CTX) is a rare, difficult-to-diagnose genetic disorder of bile acid (BA) synthesis that can cause progressive neurological damage and premature death. Detection of CTX in the newborn period would be beneficial because an effective oral therapy for CTX is available to prevent disease progression. There is no suitable test to screen newborn dried bloodspots (DBS) for CTX. Blood screening for CTX is currently performed by GC-MS measurement of elevated 5α-cholestanol. We present here LC-ESI/MS/MS methodology utilizing keto derivatization with (O-(3-trimethylammonium-propyl) hydroxylamine) reagent to enable sensitive detection of ketosterol BA precursors that accumulate in CTX. The availability of isotopically enriched derivatization reagent allowed ready tagging of ketosterols to generate internal standards for isotope dilution quantification. Ketosterols were quantified and their utility as markers for CTX was compared with 5α-cholestanol. 7α,12α-Dihydroxy-4-cholesten-3-one provided the best discrimination between CTX and unaffected samples. In two CTX, newborn DBS concentrations of this ketosterol (120-214 ng/ml) were ∼10-fold higher than in unaffected newborn DBS (16.4 ± 6.0 ng/ml), such that quantification of this ketosterol provides a test with potential to screen newborn DBS for CTX. Early detection and intervention through newborn screening would greatly benefit those affected with CTX by preventing morbidity and mortality.


Asunto(s)
Colestenonas/sangre , Xantomatosis Cerebrotendinosa/diagnóstico , Adulto , Calibración , Estudios de Casos y Controles , Pruebas con Sangre Seca , Humanos , Recién Nacido , Tamizaje Neonatal , Estándares de Referencia , Espectrometría de Masa por Ionización de Electrospray/normas , Espectrometría de Masas en Tándem/normas , Xantomatosis Cerebrotendinosa/sangre
10.
J Clin Lipidol ; 18(1): e50-e58, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37923663

RESUMEN

BACKGROUND: Oxidized forms of cholesterol (oxysterols) are implicated in atherogenesis and can accumulate in the body via direct absorption from food or through oxidative reactions of endogenous cholesterol, inducing the formation of LDL particles loaded with oxidized cholesterol. It remains unknown whether drastic reductions in LDL-cholesterol (LDL-C) are associated with changes in circulating oxysterols and whether small dense LDL (sdLDL) are more likely to carry these oxysterols and susceptible to the effects of PCSK9 inhibition (PCSK9i). OBJECTIVE: We investigate the effect of LDL-C reduction accomplished via PCSK9i on changes in plasma levels of sdLDL-cholesterol (sdLDL-C) and a common, stable oxysterol, 7-ketocholesterol (7-KC), among 134 patients referred to our Preventive Cardiology clinic. METHODS: Plasma lipid panel, sdLDL-C, and 7-KC measurements were obtained from patients before and after initiation of PCSK9i. RESULTS: The intervention caused a significant lowering of LDL-C (-55.4 %). The changes in sdLDL-C levels (mean reduction 51.4 %) were highly correlated with the reductions in LDL-C levels (R = 0.829, p < 0.001). Interestingly, whereas changes in plasma free 7-KC levels with PCSK9i treatment were much smaller than (-6.6 %) and did not parallel those of LDL-C and sdLDL-C levels, they did significantly correlate with changes in triglycerides and very low-density lipoprotein-cholesterol (VLDL-C) levels (R = 0.219, p = 0.025). CONCLUSION: Our findings suggest a non-preferential clearance of LDL subparticles as a consequence of LDL receptor upregulation caused by PCSK9 inhibition. Moreover, the lack of significant reduction in 7-KC with PCSK9i suggests that 7-KC may be in part carried by VLDL and lost during lipoprotein processing leading to LDL formation.


Asunto(s)
Cetocolesteroles , Proproteína Convertasa 9 , Humanos , LDL-Colesterol
11.
J Clin Lipidol ; 18(3): e465-e476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38637260

RESUMEN

BACKGROUND: Cerebrotendinous xanthomatosis (CTX) is a rare autosomal recessive lipid disorder. Affected patients often remain undiagnosed until the age of 20-30 years, when they have already developed significant neurologic disease that may not be reversible. An elevated plasma cholestanol concentration has been accepted as a diagnostic criterion for CTX for decades. OBJECTIVE: Full biochemical characterization was performed for three genetically and clinically confirmed atypical CTX cases with normal plasma cholestanol levels. METHODS: Clinical assessment and genetic/biochemical testing for patients with CTX was performed by their physician providing routine standard of care. RESULTS: We report three new atypical CTX cases with large extensor tendon xanthomas but normal plasma cholestanol levels. All three cases had marked elevations of bile acid precursors and bile alcohols in plasma and urine that decreased on treatment with chenodeoxycholic acid. We also review eight published cases of atypical CTX with normal/near normal circulating cholestanol levels. CONCLUSION: The atypical biochemical presentation of these cases provides a diagnostic challenge for CTX, a disorder for which cholestanol has been believed to be a sensitive biomarker. These cases demonstrate measurements of plasma cholestanol alone are insufficient to exclude a diagnosis of CTX. The data presented is consistent with the concept that bile acid precursors and bile alcohols are sensitive biomarkers for atypical CTX with normal cholestanol, and that such testing is indicated, along with CYP27A1 gene analyses, in patients presenting with significant tendon and/or tuberous xanthomas and/or neurologic disease in early adulthood despite normal or near normal cholesterol and cholestanol levels.


Asunto(s)
Ácidos y Sales Biliares , Colestanol , Xantomatosis Cerebrotendinosa , Humanos , Xantomatosis Cerebrotendinosa/genética , Xantomatosis Cerebrotendinosa/diagnóstico , Xantomatosis Cerebrotendinosa/sangre , Colestanol/sangre , Ácidos y Sales Biliares/sangre , Ácidos y Sales Biliares/metabolismo , Masculino , Adulto , Femenino , Ácido Quenodesoxicólico/uso terapéutico , Adulto Joven , Colestanoles/sangre
12.
bioRxiv ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38854129

RESUMEN

Young women have increased risk of vitamin D deficiency, which may increase breast cancer incidence. Here, we assessed the anti-cancer efficacy of vitamin D in mouse models of young-onset breast cancer. In never-pregnant mice, vitamin D supplementation increased serum 25(OH)D and hepatic 1,25(OH)2D3, reduced tumor size, and associated with anti-tumor immunity. These anti-tumor effects were not replicated in a mouse model of postpartum breast cancer, where hepatic metabolism of vitamin D was suppressed post-wean, which resulted in deficient serum 25(OH)D and reduced hepatic 1,25(OH)2D3. Treatment with active 1,25(OH)2D3 induced hypercalcemia exclusively in post-wean mice, highlighting metabolic imbalance post-wean. RNAseq revealed suppressed CYP450 expression postpartum. In sum, we provide evidence that vitamin D anti-tumor activity is mediated through immunomodulatory mechanisms and is ineffective in the post-wean window due to altered hepatic metabolism. These findings have implications for suppressed xenobiotic metabolism in postpartum women beyond vitamin D.

13.
Am J Hum Genet ; 87(6): 905-14, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21129721

RESUMEN

CK syndrome (CKS) is an X-linked recessive intellectual disability syndrome characterized by dysmorphism, cortical brain malformations, and an asthenic build. Through an X chromosome single-nucleotide variant scan in the first reported family, we identified linkage to a 5 Mb region on Xq28. Sequencing of this region detected a segregating 3 bp deletion (c.696_698del [p.Lys232del]) in exon 7 of NAD(P) dependent steroid dehydrogenase-like (NSDHL), a gene that encodes an enzyme in the cholesterol biosynthesis pathway. We also found that males with intellectual disability in another reported family with an NSDHL mutation (c.1098 dup [p.Arg367SerfsX33]) have CKS. These two mutations, which alter protein folding, show temperature-sensitive protein stability and complementation in Erg26-deficient yeast. As described for the allelic disorder CHILD syndrome, cells and cerebrospinal fluid from CKS patients have increased methyl sterol levels. We hypothesize that methyl sterol accumulation, not only cholesterol deficiency, causes CKS, given that cerebrospinal fluid cholesterol, plasma cholesterol, and plasma 24S-hydroxycholesterol levels are normal in males with CKS. In summary, CKS expands the spectrum of cholesterol-related disorders and insight into the role of cholesterol in human development.


Asunto(s)
3-Hidroxiesteroide Deshidrogenasas/genética , Anomalías Múltiples/genética , Alelos , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Temperatura , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Exones , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Mutación , Linaje , Homología de Secuencia de Aminoácido , Adulto Joven
14.
Clin Chim Acta ; 539: 170-174, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36529270

RESUMEN

BACKGROUND AND AIMS: Cerebrotendinous Xanthomatosis (CTX) is a treatable disorder of bile acid synthesis caused by deficiency of 27-sterol hydroxylase -encoded by CYP27A1- leading to gastrointestinal and progressive neuropsychiatric symptoms. Biochemically, CTX is characterized by accumulation of the bile alcohol cholestanetetrol glucuronide (GlcA-tetrol) and the deficiency of tauro-chenodeoxycholic acid (t-CDCA) and tauro-trihydroxycholestanoic acid (t-THCA). MATERIALS AND METHODS: To ascertain the feasibility of CTX newborn screening (NBS) we performed a study with deidentified Dutch dried blood spots using reagents and equipment that is frequently used in NBS laboratories. 20,076 deidentified newborn blood spots were subjected to flow-injection (FIA)-MS/MS and UPLC-MS/MS analysis to determine the concentration of GlcA-tetrol and calculate the GlcA-tetrol/t-CDCA and t-THCA/GlcA-tetrol ratios. RESULTS: Using UPLC-MS/MS analysis both GlcA-tetrol concentration and/or metabolite ratios GlcA-tetrol/t-CDCA proved to be informative biomarkers; newborn DBS results did not overlap with those of the CTX patients. For FIA-MS/MS, GlcA-tetrol also was an excellent marker but when using the combination of the GlcA-tetrol/t-CDCA and t-THCA/GlcA-tetrol ratios also did not yield any screen positives. CONCLUSION: Newborn screening for CTX using only metabolite ratios following the measurement of three CTX biomarkers is possible using either FIA-MS/MS or UPLC-MS/MS, which paves the way for introduction of CTX NBS.


Asunto(s)
Xantomatosis Cerebrotendinosa , Humanos , Recién Nacido , Xantomatosis Cerebrotendinosa/diagnóstico , Xantomatosis Cerebrotendinosa/metabolismo , Espectrometría de Masas en Tándem , Estudios Retrospectivos , Tamizaje Neonatal/métodos , Cromatografía Liquida , Ácido Quenodesoxicólico
15.
Biol Reprod ; 86(3): 89, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22156476

RESUMEN

The expressions of genes involved in cholesterol efflux increase, whereas those involved in extracellular cholesterol uptake decrease, during spontaneous functional regression of the primate corpus luteum (CL). This may result from liver x receptor (LXR) alpha (official symbol NR1H3) and/or beta (official symbol NR1H2) control of luteal gene transcription, because these nuclear receptor superfamily members are key regulators of cellular cholesterol homeostasis. Therefore, studies were conducted to assess endogenous LXR ligands in the primate CL through the luteal phase, and to determine the effect of synthetic or natural LXR ligands on cholesterol efflux and uptake in functional primate luteal cells. Using high-performance liquid chromatography tandem mass spectrometry, three LXR ligands were identified and quantified in the rhesus macaque CL, including 22R-hydroxycholesterol (22ROH), 27-hydroxycholesterol (27OH), and desmosterol. Levels of 22ROH paralleled serum progesterone concentrations, whereas mean levels of 27OH tended to be higher following the loss of progesterone synthesis. Desmosterol was present throughout the luteal phase. Functional macaque luteal cells treated with the synthetic LXR agonist T0901317 or physiologically relevant concentrations of the endogenous luteal ligands 22ROH, 27OH, and desmosterol had increased expression of various known LXR target genes and greater cholesterol efflux. Additionally, T0901317 reduced low-density lipoprotein receptor protein and extracellular low-density lipoprotein uptake, whereas 27OH decreased low-density lipoprotein receptor protein, most likely via a posttranslational mechanism. Collectively, these data support the hypothesis that LXR activation causes increased cholesterol efflux and decreased extracellular cholesterol uptake. In theory, these effects could deplete the primate CL of cholesterol needed for steroidogenesis, ultimately contributing to functional regression.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Células Lúteas/fisiología , Luteólisis/fisiología , Receptores Nucleares Huérfanos/fisiología , Animales , Transporte Biológico/fisiología , Células Cultivadas , Colesterol/metabolismo , Femenino , Receptores X del Hígado , Células Lúteas/citología , Fase Luteínica/fisiología , Macaca mulatta , Modelos Animales , Receptores de LDL/metabolismo
16.
Transl Psychiatry ; 12(1): 125, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347119

RESUMEN

Post-Traumatic Stress Disorder (PTSD) is a highly prevalent mental health disorder. Due to the high level of variability in susceptibility and severity, PTSD therapies are still insufficient. In addition to environmental exposures, genetic risks play a prominent role and one such factor is apolipoprotein E. The protein (apoE) is functionally involved in cholesterol transport and metabolism and exists as 3 major isoforms in humans: E2, E3, and E4. To model the role of apolipoprotein E isoform in stress-related changes in behavior and cognition, female and male mice (3-5 months of age) expressing E2, E3, or E4 were used. Mice were either placed into control groups or exposed to chronic variable stress (CVS), which has been shown to induce PTSD-like behavioral and neuroendocrine changes. E2 mice showed a unique response to CVS compared to E3 and E4 mice that included impaired spatial learning and memory, increased adrenal gland weight, and no increase in glucocorticoid receptor protein levels (normalized to apoE levels). In addition, the cholesterol metabolite 7-ketocholesterol was elevated in the cortex after CVS in E3 and E4, but not E2 female mice. E2 confers unique changes in behavioral, cognitive, and biomarker profiles after stress exposure and identify 7-ketocholesterol as a possible novel biomarker of the traumatic stress response. We further explored the relationship between E2 and PTSD in an understudied population by genotyping 102 patients of Cambodian and Vietnamese ethnicity. E2 carriers demonstrated a higher odds ratio of having a PTSD diagnosis compared to E3/E3 carriers, supporting that the E2 genotype is associated with PTSD diagnosis after trauma exposure in this population.


Asunto(s)
Apolipoproteínas E , Trastornos por Estrés Postraumático , Animales , Apolipoproteínas E/genética , Colesterol , Femenino , Genotipo , Humanos , Masculino , Ratones , Isoformas de Proteínas , Trastornos por Estrés Postraumático/genética
17.
Expert Rev Mol Med ; 13: e24, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21777499

RESUMEN

Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive, multiple congenital malformation and intellectual disability syndrome, with clinical characteristics that encompass a wide spectrum and great variability. Elucidation of the biochemical and genetic basis for SLOS, specifically understanding SLOS as a cholesterol deficiency syndrome caused by mutation in DHCR7, opened up enormous possibilities for therapeutic intervention. When cholesterol was discovered to be the activator of sonic hedgehog, cholesterol deficiency with inactivation of this developmental patterning gene was thought to be the cause of SLOS malformations, yet this explanation is overly simplistic. Despite these important research breakthroughs, there is no proven treatment for SLOS. Better animal models are needed to allow potential treatment testing and the study of disease pathophysiology, which is incompletely understood. Creation of human cellular models, especially models of brain cells, would be useful, and in vivo human studies are also essential. Biomarker development will be crucial in facilitating clinical trials in this rare condition, because the clinical phenotype can change over many years. Additional research in these and other areas is critical if we are to make headway towards ameliorating the effects of this devastating condition.


Asunto(s)
Colesterol/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/deficiencia , Síndrome de Smith-Lemli-Opitz , Animales , Deshidrocolesteroles/metabolismo , Humanos , Ratones , Mutación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Ratas , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/fisiopatología , Síndrome de Smith-Lemli-Opitz/terapia
19.
Chembiochem ; 10(2): 361-5, 2009 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-19105176

RESUMEN

3-Iodothyronamine (T(1)AM) and 3,3',5-triiodothyroacetic acid (Triac) are bioactive metabolites of the hormone thyroxine (T(4)). In the present study, the ability of T(1)AM and 3,3',5-triiodothyronamine (T(3)AM) to be metabolized to 3-iodothyroacetic acid (TA(1)) and Triac, respectively, was investigated. Both T(1)AM and T(3)AM were converted to their respective iodinated thyroacetic acid analogues in both cell and tissue extracts. This conversion could be significantly inhibited with the monamine oxidase (MAO) and semicarbazide-sensitive amine oxidase (SSAO) inhibitor iproniazid. TA(1) was found to be present in trace quantities in human serum and in substantial levels in serum from T(1)AM-treated rats. These results demonstrate that iodothyronamines are substrates for amine oxidases and that this metabolism may be the source of the corresponding endogenous arylacetic acid products Triac and TA(1).


Asunto(s)
Tironinas/metabolismo , Triyodotironina/análogos & derivados , Aldehído Deshidrogenasa/metabolismo , Animales , Desaminación , Humanos , Monoaminooxidasa/metabolismo , Oxidación-Reducción , Ratas , Especificidad por Sustrato , Tironinas/química , Triyodotironina/química , Triyodotironina/metabolismo
20.
Genet Med ; 11(5): 359-64, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19452638

RESUMEN

In June 2007, the Smith-Lemli-Opitz/RSH Foundation held a scientific conference hosted jointly by Dr. Robert Steiner from Oregon Health & Science University and Dr. Forbes D. Porter from The Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health. The main goal of this meeting was to promote interaction between scientists with expertise in cholesterol homeostasis, brain cholesterol metabolism, developmental biology, and oxysterol and neurosteroid biochemistry, clinicians researching and treating patients with Smith-Lemli-Opitz syndrome, the patient support organization and families. This report summarizes the presentations and discussions at the conference, represents the conference proceedings, and is intended to foster collaborative research and ultimately improve understanding and treatment of Smith-Lemli-Opitz syndrome and other inborn errors of cholesterol synthesis.


Asunto(s)
Encéfalo/metabolismo , Colesterol/biosíntesis , Síndrome de Smith-Lemli-Opitz/diagnóstico , Síndrome de Smith-Lemli-Opitz/patología , Terapia Genética/métodos , Humanos , National Institutes of Health (U.S.) , Síndrome de Smith-Lemli-Opitz/terapia , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA