Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nucleic Acids Res ; 52(D1): D442-D455, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37962385

RESUMEN

Short Linear Motifs (SLiMs) are the smallest structural and functional components of modular eukaryotic proteins. They are also the most abundant, especially when considering post-translational modifications. As well as being found throughout the cell as part of regulatory processes, SLiMs are extensively mimicked by intracellular pathogens. At the heart of the Eukaryotic Linear Motif (ELM) Resource is a representative (not comprehensive) database. The ELM entries are created by a growing community of skilled annotators and provide an introduction to linear motif functionality for biomedical researchers. The 2024 ELM update includes 346 novel motif instances in areas ranging from innate immunity to both protein and RNA degradation systems. In total, 39 classes of newly annotated motifs have been added, and another 17 existing entries have been updated in the database. The 2024 ELM release now includes 356 motif classes incorporating 4283 individual motif instances manually curated from 4274 scientific publications and including >700 links to experimentally determined 3D structures. In a recent development, the InterPro protein module resource now also includes ELM data. ELM is available at: http://elm.eu.org.


Asunto(s)
Secuencias de Aminoácidos , Bases de Datos de Proteínas , Eucariontes , Secuencias de Aminoácidos/genética , Procesamiento Proteico-Postraduccional , Proteínas/genética , Proteínas/metabolismo , Eucariontes/genética , Internet
2.
BMC Cancer ; 21(1): 790, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238275

RESUMEN

BACKGROUND: Currently it is unclear how in situ breast cancer progresses to invasive disease; therefore, a better understanding of the events that occur during the transition to invasive carcinoma is warranted. Here we have conducted a detailed molecular and cellular characterization of two, patient-derived, ductal carcinoma in situ (DCIS) cell lines, ETCC-006 and ETCC-010. METHODS: Human DCIS cell lines, ETCC-006 and ETCC-010, were compared against a panel of cell lines including the immortalized, breast epithelial cell line, MCF10A, breast cancer cell lines, MCF7 and MDA-MB-231, and another DCIS line, MCF10DCIS.com. Cell morphology, hormone and HER2/ERBB2 receptor status, cell proliferation, survival, migration, anchorage-independent growth, indicators of EMT, cell signalling pathways and cell cycle proteins were examined using immunostaining, immunoblots, and quantitative, reverse transcriptase PCR (qRT-PCR), along with clonogenic, wound-closure and soft agar assays. RNA sequencing (RNAseq) was used to provide a transcriptomic profile. RESULTS: ETCC-006 and ETCC-010 cells displayed notable differences to another DCIS cell line, MCF10DCIS.com, in terms of morphology, steroid-receptor/HER status and markers of EMT. The ETCC cell lines lack ER/PR and HER, form colonies in clonogenic assays, have migratory capacity and are capable of anchorage-independent growth. Despite being isogenic, less than 30% of differentially expressed transcripts overlapped between the two lines, with enrichment in pathways involving receptor tyrosine kinases and DNA replication/cell cycle programs and in gene sets responsible for extracellular matrix organisation and ion transport. CONCLUSIONS: For the first time, we provide a molecular and cellular characterization of two, patient-derived DCIS cell lines, ETCC-006 and ETCC-010, facilitating future investigations into the molecular basis of DCIS to invasive ductal carcinoma transition.


Asunto(s)
Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos
3.
Cancers (Basel) ; 16(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893110

RESUMEN

Advancements in oncology, especially with the era of precision oncology, is resulting in a paradigm shift in cancer care. Indeed, innovative technologies, such as artificial intelligence, are paving the way towards enhanced diagnosis, prevention, and personalised treatments as well as novel drug discoveries. Despite excellent progress, the emergence of resistant cancers has curtailed both the pace and extent to which we can advance. By combining both their understanding of the fundamental biological mechanisms and technological advancements such as artificial intelligence and data science, cancer researchers are now beginning to address this. Together, this will revolutionise cancer care, by enhancing molecular interventions that may aid cancer prevention, inform clinical decision making, and accelerate the development of novel therapeutic drugs. Here, we will discuss the advances and approaches in both artificial intelligence and precision oncology, presented at the 59th Irish Association for Cancer Research annual conference.

4.
Front Cell Dev Biol ; 11: 1104514, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36861035

RESUMEN

Epithelial ovarian cancer (EOC) is the most fatal gynaecological malignancy, accounting for over 200,000 deaths worldwide per year. EOC is a highly heterogeneous disease, classified into five major histological subtypes-high-grade serous (HGSOC), clear cell (CCOC), endometrioid (ENOC), mucinous (MOC) and low-grade serous (LGSOC) ovarian carcinomas. Classification of EOCs is clinically beneficial, as the various subtypes respond differently to chemotherapy and have distinct prognoses. Cell lines are often used as in vitro models for cancer, allowing researchers to explore pathophysiology in a relatively cheap and easy to manipulate system. However, most studies that make use of EOC cell lines fail to recognize the importance of subtype. Furthermore, the similarity of cell lines to their cognate primary tumors is often ignored. Identification of cell lines with high molecular similarity to primary tumors is needed in order to better guide pre-clinical EOC research and to improve development of targeted therapeutics and diagnostics for each distinctive subtype. This study aims to generate a reference dataset of cell lines representative of the major EOC subtypes. We found that non-negative matrix factorization (NMF) optimally clustered fifty-six cell lines into five groups, putatively corresponding to each of the five EOC subtypes. These clusters validated previous histological groupings, while also classifying other previously unannotated cell lines. We analysed the mutational and copy number landscapes of these lines to investigate whether they harboured the characteristic genomic alterations of each subtype. Finally we compared the gene expression profiles of cell lines with 93 primary tumor samples stratified by subtype, to identify lines with the highest molecular similarity to HGSOC, CCOC, ENOC, and MOC. In summary, we examined the molecular features of both EOC cell lines and primary tumors of multiple subtypes. We recommend a reference set of cell lines most suited to represent four different subtypes of EOC for both in silico and in vitro studies. We also identify lines displaying poor overall molecular similarity to EOC tumors, which we argue should be avoided in pre-clinical studies. Ultimately, our work emphasizes the importance of choosing suitable cell line models to maximise clinical relevance of experiments.

5.
Cancer Treat Res Commun ; 37: 100768, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37852123

RESUMEN

Globally, cancer is one of the leading causes of mortality, accounting for 10 million deaths per year. Non-coding RNAs (ncRNAs) play integral and diverse roles in cancer, possessing the ability to both promote oncogenesis and impede tumor formation. This review discusses the various roles of microRNAs, transfer RNA-derived small RNAs, long non-coding RNAs and lncRNA-derived microproteins in cancer progression and prevention. We highlight the diagnostic and therapeutic potential of these ncRNAs, with a particular focus on detection in liquid biopsies and targeting of ncRNAs with small inhibitory molecules. Ultimately, the biological functions of cancer-associated ncRNAs, as well as the development of ncRNA-based technologies, are compelling areas for further research, holding the possibility of revolutionizing cancer treatment and diagnosis.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , ARN no Traducido/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , ARN Largo no Codificante/genética
6.
Cancers (Basel) ; 13(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34830906

RESUMEN

Our understanding of cancer initiation, progression, and treatment is continually progressing through dedicated research achieved through laboratory investigation, clinical trials, and patient engagement. The importance and complexity of the microenvironment and its role in tumor development and behavior is pivotal to the understanding of tumor growth and the best course of treatment. The 57th Irish Association for Cancer Research (IACR) Annual Conference collected key researchers, clinicians, and patient advocates together to highlight and discuss the recognized importance of the microenvironment and treatment advances in cancer. In this article, we describe the key components of the microenvironment that influence tumor development and treatment, including the microbiome, metabolism, and immune response and the progress of preclinical models to reflect these complex environments. From a psycho-social oncology perspective, we highlight expert opinion and data on the process of shared decision-making in the context of emerging cancer treatments.

7.
Front Cell Dev Biol ; 9: 703374, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490252

RESUMEN

Detection of translation in so-called non-coding RNA provides an opportunity for identification of novel bioactive peptides and microproteins. The main methods used for these purposes are ribosome profiling and mass spectrometry. A number of publicly available datasets already exist for a substantial number of different cell types grown under various conditions, and public data mining is an attractive strategy for identification of translation in non-coding RNAs. Since the analysis of publicly available data requires intensive data processing, several data resources have been created recently for exploring processed publicly available data, such as OpenProt, GWIPS-viz, and Trips-Viz. In this work we provide a detailed demonstration of how to use the latter two tools for exploring experimental evidence for translation of RNAs hitherto classified as non-coding. For this purpose, we use a set of transcripts with substantially different patterns of ribosome footprint distributions. We discuss how certain features of these patterns can be used as evidence for or against genuine translation. During our analysis we concluded that the MTLN mRNA, previously misannotated as lncRNA LINC00116, likely encodes only a short proteoform expressed from shorter RNA transcript variants.

8.
Cancers (Basel) ; 13(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573275

RESUMEN

While substantial progress has been made to improve the diagnosis, prognosis, and survivorship of patients with cancer, certain cancer types, along with metastatic and refractory disease, remain clinical challenges. To improve patient outcomes, ultimately, the cancer research community must meet and overcome these challenges, leading to improved approaches to treat the most difficult cancers. Here, we discuss research progress aimed at gaining a better understanding of the molecular and cellular changes in tumor cells and the surrounding stroma, presented at the 56th Irish Association for Cancer Research (IACR) Annual Conference. With a focus on poor prognosis cancers, such as esophageal and chemo-resistant colorectal cancers, we highlight how detailed molecular knowledge of tumor and stromal biology can provide windows of opportunity for biomarker discovery and therapeutic targets. Even with previously characterized targets, such as phosphoinositide 3-kinase (PI3K), one of the most altered proteins in all human cancers, new insights into how this protein may be more effectively inhibited through novel combination therapies is presented.

9.
Noncoding RNA Res ; 5(2): 48-59, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32206740

RESUMEN

Breast cancer research has traditionally centred on genomic alterations, hormone receptor status and changes in cancer-related proteins to provide new avenues for targeted therapies. Due to advances in next generation sequencing technologies, there has been the emergence of long, non-coding RNAs (lncRNAs) as regulators of normal cellular events, with links to various disease states, including breast cancer. Here we describe our bioinformatic analyses of a previously published RNA sequencing (RNA-seq) dataset to identify lncRNAs with altered expression levels in a subset of breast cancer cell lines. Using a previously published RNA-seq dataset of 675 cancer cell lines, a subset of 18 cell lines was selected for our analyses that included 16 breast cancer lines, one ductal carcinoma in situ line and one normal-like breast epithelial cell line. Principal component analysis demonstrated correlation with well-established categorisation methods of breast cancer (i.e. luminal A/B, HER2 enriched and basal-like A/B). Through detailed comparison of differentially expressed lncRNAs in each breast cancer sub-type with normal-like breast epithelial cells, we identified 15 lncRNAs with consistently altered expression, including three uncharacterised lncRNAs. Utilising data from The Cancer Genome Atlas (TCGA) and The Genotype Tissue Expression (GETx) project via Gene Expression Profiling Interactive Analysis (GEPIA2), we assessed clinical relevance of several identified lncRNAs with invasive breast cancer. Lastly, we determined the relative expression level of six lncRNAs across a spectrum of breast cancer cell lines to experimentally confirm the findings of our bioinformatic analyses. Overall, we show that the use of existing RNA-seq datasets, if re-analysed with modern bioinformatic tools, can provide a valuable resource to identify lncRNAs that could have important biological roles in oncogenesis and tumour progression.

10.
Trends Genet ; 18(11): 572-7, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12414187

RESUMEN

Translational regulation is an important aspect of gene regulation, particularly during early development of the fruit fly embryo when transcriptional mechanisms are untenable. Study of pattern formation and dosage compensation has identified several repressors that bind discrete sites in the untranslated portions of target mRNAs. These repressors do not work in isolation - each binds multiple sites in the appropriate mRNA, and the resulting RNA-protein complexes appear to recruit co-repressors by a variety of mechanisms.


Asunto(s)
Drosophila/genética , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Animales , Proteínas de Drosophila/genética , ARN Mensajero/genética
11.
Neuron ; 96(4): 730-735, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29144972

RESUMEN

Science is ideally suited to connect people from different cultures and thereby foster mutual understanding. To promote international life science collaboration, we have launched "The Science Bridge" initiative. Our current project focuses on partnership between Western and Middle Eastern neuroscience communities.


Asunto(s)
Cooperación Internacional , Neurociencias/historia , Europa (Continente) , Historia del Siglo XV , Historia del Siglo XXI , Historia Antigua , Historia Medieval , Humanos , Medio Oriente
12.
Open Biol ; 6(5)2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27249819

RESUMEN

Abundant evidence for translation within the 5' leaders of many human genes is rapidly emerging, especially, because of the advent of ribosome profiling. In most cases, it is believed that the act of translation rather than the encoded peptide is important. However, the wealth of available sequencing data in recent years allows phylogenetic detection of sequences within 5' leaders that have emerged under coding constraint and therefore allow for the prediction of functional 5' leader translation. Using this approach, we previously predicted a CUG-initiated, 173 amino acid N-terminal extension to the human tumour suppressor PTEN. Here, a systematic experimental analysis of translation events in the PTEN 5' leader identifies at least two additional non-AUG-initiated PTEN proteoforms that are expressed in most human cell lines tested. The most abundant extended PTEN proteoform initiates at a conserved AUU codon and extends the canonical AUG-initiated PTEN by 146 amino acids. All N-terminally extended PTEN proteoforms tested retain the ability to downregulate the PI3K pathway. We also provide evidence for the translation of two conserved AUG-initiated upstream open reading frames within the PTEN 5' leader that control the ratio of PTEN proteoforms.


Asunto(s)
Regiones no Traducidas 5' , Codón , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Secuencia Conservada , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Sistemas de Lectura Abierta , Fosfatidilinositol 3-Quinasas/metabolismo , Filogenia , Biosíntesis de Proteínas , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA