Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Eukaryot Microbiol ; : e13038, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934348

RESUMEN

Since the advent of sequencing techniques and due to their continuous evolution, it has become easier and less expensive to obtain the complete genome sequence of any organism. Nevertheless, to elucidate all biological processes governing organism development, quality annotation is essential. In genome annotation, predicting gene structure is one of the most important and captivating challenges for computational biology. This aspect of annotation requires continual optimization, particularly for genomes as unusual as those of microsporidia. Indeed, this group of fungal-related parasites exhibits specific features (highly reduced gene sizes, sequences with high rate of evolution) linked to their evolution as intracellular parasites, requiring the implementation of specific annotation approaches to consider all these features. This review aimed to outline these characteristics and to assess the increasingly efficient approaches and tools that have enhanced the accuracy of gene prediction for microsporidia, both in terms of sensitivity and specificity. Subsequently, a final part will be dedicated to postgenomic approaches aimed at reinforcing the annotation data generated by prediction software. These approaches include the characterization of other understudied genes, such as those encoding regulatory noncoding RNAs or very small proteins, which also play crucial roles in the life cycle of these microorganisms.

2.
J Eukaryot Microbiol ; : e13043, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973152

RESUMEN

Microsporidia comprise a large phylum of single-cell and obligate intracellular parasites that can infect a wide range of invertebrate and vertebrate hosts including humans. These fungal-related parasites are characterized by a highly reduced genome, a strong energy dependence on their host, but also by their unique invasion organelle known as the polar tube which is coiled within the resistant spore. Upon appropriate environmental stimulation, the long hollow polar tube (ranging from 50 to 500 µm in length) is extruded at ultra-fast speeds (300 µm/s) from the spore acting as a harpoon-like organelle to transport and deliver the infectious material or sporoplasm into the host cell. To date, seven polar tube proteins (PTPs) with distinct localizations along the extruded polar tube have been described. For example, the specific location of PTP4 and PTP7 at the tip of the polar tube supports their role in interacting with cellular receptor(s). This chapter provides a brief overview on the current understanding of polar tube structure and dynamics of extrusion, primarily through recent advancements in cryo-tomography and 3D reconstruction. It also explores the various mechanisms used for host cell invasion. Finally, recent studies on the structure and maturation of sporoplasm and its moving through the tube are discussed.

3.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255958

RESUMEN

With nearly 1700 species, Microsporidia represent a group of obligate intracellular eukaryotes with veterinary, economic and medical impacts. To help understand the biological functions of these microorganisms, complete genome sequencing is routinely used. Nevertheless, the proper prediction of their gene catalogue is challenging due to their taxon-specific evolutionary features. As innovative genome annotation strategies are needed to obtain a representative snapshot of the overall lifestyle of these parasites, the MicroAnnot tool, a dedicated workflow for microsporidian sequence annotation using data from curated databases of accurately annotated microsporidian genes, has been developed. Furthermore, specific modules have been implemented to perform small gene (<300 bp) and transposable element identification. Finally, functional annotation was performed using the signature-based InterProScan software. MicroAnnot's accuracy has been verified by the re-annotation of four microsporidian genomes for which structural annotation had previously been validated. With its comparative approach and transcriptional signal identification method, MicroAnnot provides an accurate prediction of translation initiation sites, an efficient identification of transposable elements, as well as high specificity and sensitivity for microsporidian genes, including those under 300 bp.


Asunto(s)
Microsporidios , Microsporidios/genética , Flujo de Trabajo , Evolución Biológica , Elementos Transponibles de ADN/genética , Bases de Datos Factuales
4.
J Invertebr Pathol ; 172: 107348, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32119953

RESUMEN

Honeybees ensure a key ecosystem service by pollinating many agricultural crops and wild plants. However, in the past few decades, managed bee colonies have been declining in Europe and North America. Researchers have emphasized both parasites and pesticides as the most important factors. Infection by the parasite Nosema ceranae and exposure to pesticides can contribute to gut dysbiosis, impacting the honeybee physiology. Here, we examined and quantified the effects of N. ceranae, the neonicotinoid thiamethoxam, the phenylpyrazole fipronil and the carboxamide boscalid, alone and in combination, on the honeybee gut microbiota. Chronic exposures to fipronil and thiamethoxam alone or combined with N. ceranae infection significantly decreased honeybee survival whereas the fungicide boscalid had no effect on uninfected bees. Interestingly, increased mortality was observed in N. ceranae-infected bees after exposure to boscalid, with synergistic negative effects. Regarding gut microbiota composition, co-exposure to the parasite and each pesticide led to decreased abundance of Alphaproteobacteria, and increased abundance of Gammaproteobacteria. The parasite also induced an increase of bacterial alpha-diversity (species richness). Our findings demonstrated that exposure of honeybees to N. ceranae and/or pesticides play a significant role in colony health and is associated with the establishment of a dysbiotic gut microbiota.


Asunto(s)
Abejas/efectos de los fármacos , Abejas/microbiología , Fungicidas Industriales/efectos adversos , Microbioma Gastrointestinal/fisiología , Insecticidas/efectos adversos , Nosema/fisiología , Animales , Compuestos de Bifenilo/efectos adversos , Niacinamida/efectos adversos , Niacinamida/análogos & derivados , Pirazoles/efectos adversos , Tiametoxam/efectos adversos
5.
J Invertebr Pathol ; 176: 107478, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33027624

RESUMEN

Nosema ceranae is an emerging and invasive gut pathogen in Apis mellifera and is considered as a factor contributing to the decline of honeybee populations. Here, we used a combined LC-MS and NMR approach to reveal the metabolomics changes in the hemolymph of honeybees infected by this obligate intracellular parasite. For metabolic profiling, hemolymph samples were collected from both uninfected and N. ceranae-infected bees at two time points, 2 days and 10 days after the experimental infection of emergent bees. Hemolymph samples were individually analyzed by LC-MS, whereas each NMR spectrum was obtained from a pool of three hemolymphs. Multivariate statistical PLS-DA models clearly showed that the age of bees was the parameter with the strongest effect on the metabolite profiles. Interestingly, a total of 15 biomarkers were accurately identified and were assigned as candidate biomarkers representative of infection alone or combined effect of age and infection. These biomarkers included carbohydrates (α/ß glucose, α/ß fructose and hexosamine), amino acids (histidine and proline), dipeptides (Glu-Thr, Cys-Cys and γ-Glu-Leu/Ile), metabolites involved in lipid metabolism (choline, glycerophosphocholine and O-phosphorylethanolamine) and a polyamine compound (spermidine). Our study demonstrated that this untargeted metabolomics-based approach may be useful for a better understanding of pathophysiological mechanisms of the honeybee infection by N. ceranae.


Asunto(s)
Abejas/metabolismo , Hemolinfa/química , Interacciones Huésped-Patógeno , Metabolómica/métodos , Nosema/fisiología , Animales , Abejas/química , Cromatografía Líquida de Alta Presión/métodos , Espectroscopía de Resonancia Magnética/métodos , Metaboloma , Metabolómica/instrumentación , Espectrometría de Masas en Tándem/métodos
6.
Pestic Biochem Physiol ; 163: 138-146, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31973850

RESUMEN

Honeybees ensure a key ecosystemic service by pollinating many agricultural crops and wild plants. However, since few decades, managed bee colonies have declined worldwide. This phenomenon is considered to be multifactorial, with a strong emphasis on both parasites and pesticides. Infection by the parasite Nosema ceranae and exposure to pesticides can contribute to adverse effects, resulting in a perturbation of the honeybee physiology. We thus hypothesized that probiotic treatment could be promising to treat or prevent these disturbances. The aim of this study was to evaluate the effects of probiotics on N. ceranae-infected and intoxicated honeybees (by the insecticide thiamethoxam and the fungicide boscalid). For this purpose, experiments were conducted with five probiotics. Among them, Pediococcus acidilactici (PA) showed the best protective effect against the parasite and pesticides. PA significantly improved the infected honeybee lifespan as prophylactic and curative treatments (respectively 2.3 fold and 1.7 fold). Furthermore, the exposure to pesticides induced an increase of honeybee mortality compared with the control group (p < .001) that was restored by the PA treatment. Despite its beneficial effect on honeybee lifespan, the PA administration did not induce changes in the gut bacterial communities (neither in abundance or diversity). N. ceranae and the pesticides were shown to deregulate genes involved in honeybee development (vitellogenin), immunity (serine protease 40, defensin) and detoxification system (glutathione peroxidase-like 2, catalase), and these effects were corrected by the PA treatment. This study highlights the promising use of PA to protect honeybees from both pathogens and pesticides.


Asunto(s)
Insecticidas , Nosema , Animales , Abejas , Pediococcus
7.
PLoS Pathog ; 13(4): e1006341, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28426751

RESUMEN

Microsporidia have been identified as pathogens that have important effects on our health, food security and economy. A key to the success of these obligate intracellular pathogens is their unique invasion organelle, the polar tube, which delivers the nucleus containing sporoplasm into host cells during invasion. Due to the size of the polar tube, the rapidity of polar tube discharge and sporoplasm passage, and the absence of genetic techniques for the manipulation of microsporidia, study of this organelle has been difficult and there is relatively little known regarding polar tube formation and the function of the proteins making up this structure. Herein, we have characterized polar tube protein 4 (PTP4) from the microsporidium Encephalitozoon hellem and found that a monoclonal antibody to PTP4 labels the tip of the polar tube suggesting that PTP4 might be involved in a direct interaction with host cell proteins during invasion. Further analyses employing indirect immunofluorescence (IFA), enzyme-linked immunosorbent (ELISA) and fluorescence-activated cell sorting (FACS) assays confirmed that PTP4 binds to mammalian cells. The addition of either recombinant PTP4 protein or anti-PTP4 antibody reduced microsporidian infection of its host cells in vitro. Proteomic analysis of PTP4 bound to host cell membranes purified by immunoprecipitation identified transferrin receptor 1 (TfR1) as a potential host cell interacting partner for PTP4. Additional experiments revealed that knocking out TfR1, adding TfR1 recombinant protein into cell culture, or adding anti-TfR1 antibody into cell culture significantly reduced microsporidian infection rates. These results indicate that PTP4 is an important protein competent of the polar tube involved in the mechanism of host cell infection utilized by these pathogens.


Asunto(s)
Anticuerpos Antifúngicos/inmunología , Encephalitozoon/genética , Encefalitozoonosis/microbiología , Proteínas Fúngicas/metabolismo , Proteómica , Animales , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Encephalitozoon/inmunología , Encephalitozoon/patogenicidad , Encephalitozoon/ultraestructura , Encefalitozoonosis/patología , Proteínas Fúngicas/genética , Orgánulos/metabolismo , Orgánulos/ultraestructura , Conejos , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Proteínas Recombinantes , Esporas Fúngicas/ultraestructura
8.
J Invertebr Pathol ; 159: 121-128, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30268675

RESUMEN

The invasive microsporidian species, Nosema ceranae, causes nosemosis in honeybees and is suspected to be involved in Western honeybee (Apis mellifera) declines worldwide. The midgut of honeybees is the site of infection; the microsporidium can disturb the functioning of this organ and, thus, the bee physiology. Host defense against pathogens is not limited to resistance (i.e. the immune response) but also involves resilience. This process implies that the host can tolerate and repair damage inflicted by the infection- by the pathogen itself or by an excessive host immune response. Enterocyte damage caused by N. ceranae can be compensated by proliferation of intestinal stem cells (ISCs) that are under the control of multiple pathways. In the present study, we investigated the impact of N. ceranae on honeybee epithelium renewal by following the mitotic index of midgut stem cells during a 22-day N. ceranae infection. Fluorescence in situ hybridization (FISH) and immunostaining experiments were performed to follow the parasite proliferation/progression in the intestinal tissue, especially in the ISCs as they are key cells for the midgut homeostasis. We also monitored the transcriptomic profile of 7 genes coding for key proteins involved in pathways implicated in the gut epithelium renewal and homeostasis. We have shown for the first time that N. ceranae can negatively alter the gut epithelium renewal rate and disrupt some signaling pathways involved in the gut homeostasis. This alteration is correlated to a reduced longevity of N. ceranae-infected honeybees and we can assume that honeybee susceptibility to N. ceranae could be due to an impaired ability to repair gut damage.


Asunto(s)
Abejas/parasitología , Mucosa Intestinal/patología , Mucosa Intestinal/parasitología , Animales , Nosema
11.
BMC Infect Dis ; 16(1): 451, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27566417

RESUMEN

BACKGROUND: Blastocystis sp. is the most common intestinal parasite of humans. Despite its potential public health impact, epidemiological data regarding the prevalence and molecular subtype distribution of Blastocystis sp. in Europe are rarely reported. Therefore, the first multi-center epidemiological survey performed in Europe was conducted in France to diagnose and subtype Blastocystis sp. and to identify risk factors for infection. METHODS: Stool samples from 788 patients were collected either in summer or winter in 11 hospitals throughout France together with patient data. All stool samples were tested for the presence of Blastocystis sp. by quantitative PCR targeting the SSU rDNA gene. Positive samples were sequenced to determine the distribution of the subtypes in our cohort. Statistical analyses were performed to identify potential risk factors for infection. RESULTS: Using quantitative PCR, the overall prevalence of Blastocystis sp. was shown to reach 18.1 %. The prevalence was significantly higher in summer (23.2 %) than in winter (13.7 %). Travellers or subjects infected with other enteric parasites were significantly more infected by Blastocystis sp. than non-travellers or subjects free of other enteric parasites, respectively. Different age-related epidemiological patterns were also highlighted from our data. The prevalence of Blastocystis sp. was not significantly higher in patients with digestive symptoms or diagnosed with chronic bowel diseases. Among symptomatic patients, Blastocystis sp. infection was significantly associated with abdominal pain. Gender, socioeconomic status, and immune status were not identified as potential risk factors associated with infection. Among a total of 141 subtyped isolates, subtype 3 was predominant (43.3 %), followed by subtype 1 and subtype 4 (20 %), subtype 2 (12.8 %), subtype 6 and subtype 7 (2.1 %). No association between ST and clinical symptoms was statistically evidenced. CONCLUSIONS: A high prevalence of Blastocystis sp. infection was found in our French patient population. Seasonal impact on the prevalence of Blastocystis sp. was highlighted and recent travels and age were identified as main risk factors for infection. Most cases were caused by subtypes 1 to 4, with a predominance of subtype 3. Large variations in both prevalence and ST distribution between hospitals were also observed, suggesting distinct reservoirs and transmission sources of the parasite.


Asunto(s)
Infecciones por Blastocystis/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Blastocystis/clasificación , Blastocystis/aislamiento & purificación , Infecciones por Blastocystis/diagnóstico , Niño , Preescolar , Estudios Transversales , Heces/parasitología , Femenino , Francia , Humanos , Lactante , Masculino , Persona de Mediana Edad , Prevalencia , Factores de Riesgo , Adulto Joven
12.
BMC Infect Dis ; 14: 164, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24666632

RESUMEN

BACKGROUND: Blastocystis sp. is currently the most common intestinal protist found in human feces and considered an emerging parasite with a worldwide distribution. Because of its potential impact in public health, we reinforced the picture of Blastocystis sp. prevalence and molecular subtype distribution in Africa by performing the first survey of this parasite in Senegal. METHODS: Stool samples from 93 symptomatic presenting with various gastrointestinal disorders or asymptomatic children living in three villages of the Senegal River Basin were tested for the presence of Blastocystis sp. by non-quantitative and quantitative PCR using primer pairs targeting the SSU rDNA gene. Positive samples were subtyped to investigate the frequency of Blastocystis sp. subtypes in our cohort and the distribution of subtypes in the symptomatic and asymptomatic groups of children. RESULTS: By the use of molecular tools, all 93 samples were found to be positive for Blastocystis sp. indicating a striking parasite prevalence of 100%. Mixed infections by two or three subtypes were identified in eight individuals. Among a total of 103 subtyped isolates, subtype 3 was most abundant (49.5%) followed by subtype 1 (28.2%), subtype 2 (20.4%) and subtype 4 (1.9%). Subtype 3 was dominant in the symptomatic group while subtypes 1 and 2 were detected with equal frequency in both symptomatic and asymptomatic groups. The distribution of subtypes was compared with those available in other African countries and worldwide. Comparison confirmed that subtype 4 is much less frequently detected or absent in Africa while it is commonly found in Europe. Potential sources of Blastocystis sp. infection including human-to-human, zoonotic, and waterborne transmissions were also discussed. CONCLUSIONS: The prevalence of Blastocystis sp. in our Senegalese population was the highest prevalence ever recovered worldwide for this parasite by reaching 100%. All cases were caused by subtypes 1, 2, 3 and 4 with a predominance of subtype 3. More than half of the children infected by Blastocystis sp. presented various gastrointestinal disorders. Such high prevalence of blastocystosis in developing countries makes its control a real challenge for public health authorities.


Asunto(s)
Infecciones por Blastocystis/epidemiología , Blastocystis/aislamiento & purificación , Blastocystis/genética , Infecciones por Blastocystis/parasitología , Niño , Preescolar , Estudios de Cohortes , Heces/parasitología , Femenino , Salud Global , Humanos , Masculino , Epidemiología Molecular , Prevalencia , Ríos , Senegal/epidemiología
13.
Nature ; 452(7187): 624-8, 2008 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-18311129

RESUMEN

Microsporidia are highly specialized obligate intracellular parasites of other eukaryotes (including humans) that show extreme reduction at the molecular, cellular and biochemical level. Although microsporidia have long been considered as early branching eukaryotes that lack mitochondria, they have recently been shown to contain a tiny mitochondrial remnant called a mitosome. The function of the mitosome is unknown, because microsporidians lack the genes for canonical mitochondrial functions, such as aerobic respiration and haem biosynthesis. However, microsporidial genomes encode several components of the mitochondrial iron-sulphur (Fe-S) cluster assembly machinery. Here we provide experimental insights into the metabolic function and localization of these proteins. We cloned, functionally characterized and localized homologues of several central mitochondrial Fe-S cluster assembly components for the microsporidians Encephalitozoon cuniculi and Trachipleistophora hominis. Several microsporidial proteins can functionally replace their yeast counterparts in Fe-S protein biogenesis. In E. cuniculi, the iron (frataxin) and sulphur (cysteine desulphurase, Nfs1) donors and the scaffold protein (Isu1) co-localize with mitochondrial Hsp70 to the mitosome, consistent with it being the functional site for Fe-S cluster biosynthesis. In T. hominis, mitochondrial Hsp70 and the essential sulphur donor (Nfs1) are still in the mitosome, but surprisingly the main pools of Isu1 and frataxin are cytosolic, creating a conundrum of how these key components of Fe-S cluster biosynthesis coordinate their function. Together, our studies identify the essential biosynthetic process of Fe-S protein assembly as a key function of microsporidian mitosomes.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Microsporidios/metabolismo , Animales , Línea Celular , Clonación Molecular , Proteínas Fúngicas/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Microsporidios/citología , Microsporidios/genética , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Transporte de Proteínas , Conejos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Frataxina
14.
J Invertebr Pathol ; 121: 89-96, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25038465

RESUMEN

Many invasive pathogens effectively bypass the insect defenses to ensure the completion of their life cycle. Among those, an invasive microsporidian species, Nosema ceranae, can cause nosemosis in honeybees. N. ceranae was first described in the Asian honeybee Apis cerana and is suspected to be involved in Western honeybee (Apis mellifera) declines worldwide. The midgut of honeybees is the first barrier against N. ceranae attacks. To bring proteomics data on honeybee/N. ceranae crosstalk and more precisely to decipher the worker honeybee midgut response after an oral inoculation of N. ceranae (10days post-infection), we used 2D-DIGE (2-Dimensional Differential In-Gel Electrophoresis) combined with mass spectrometry. Forty-five protein spots produced by the infected worker honeybee group were shown to be differentially expressed when compared to the uninfected group; 14 were subsequently identified by mass spectrometry. N. ceranae mainly caused a modulation of proteins involved in three key host biological functions: (i) energy production, (ii) innate immunity (reactive oxygen stress) and (iii) protein regulation. The modulation of these host biological functions suggests that N. ceranae creates a zone of "metabolic habitat modification" in the honeybee midgut favoring its development by enhancing availability of nutrients and reducing the worker honeybee defense.


Asunto(s)
Abejas/microbiología , Interacciones Huésped-Patógeno , Nosema/fisiología , Animales , Abejas/metabolismo , Proteínas de Insectos/metabolismo , Mapas de Interacción de Proteínas , Proteómica/métodos
15.
Microorganisms ; 12(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38258019

RESUMEN

The honey bee Apis mellifera is exposed to a variety of biotic and abiotic stressors, such as the highly prevalent microsporidian parasite Nosema (Vairimorpha) ceranae and neonicotinoid insecticides. Both can affect honey bee physiology and microbial gut communities, eventually reducing its lifespan. They can also have a combined effect on the insect's survival. The use of bacterial probiotics has been proposed to improve honey bee health, but their beneficial effect remains an open question. In the present study, western honey bees were experimentally infected with N. ceranae spores, chronically exposed to the neonicotinoid thiamethoxam, and/or supplied daily with the homofermentative bacterium Pediococcus acidilactici MA18/5M thought to improve the honey bees' tolerance to the parasite. Deep shotgun metagenomic sequencing allowed the response of the gut microbiota to be investigated with a taxonomic resolution at the species level. All treatments induced significant changes in honey bee gut bacterial communities. Nosema ceranae infection increased the abundance of Proteus mirabilis, Frischella perrara, and Gilliamella apicola and reduced the abundance of Bifidobacterium asteroides, Fructobacillus fructosus, and Lactobacillus spp. Supplementation with P. acidilactici overturned some of these alterations, bringing back the abundance of some altered species close to the relative abundance found in the controls. Surprisingly, the exposure to thiamethoxam also restored the relative abundance of some species modulated by N. ceranae. This study shows that stressors and probiotics may have an antagonistic impact on honey bee gut bacterial communities and that P. acidilactici may have a protective effect against the dysbiosis induced by an infection with N. ceranae.

16.
J Biol Chem ; 287(33): 27580-92, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22696218

RESUMEN

The general transcription factor TFIID recognizes specifically the core promoter of genes transcribed by eukaryotic RNA polymerase II, nucleating the assembly of the preinitiation complex at the transcription start site. However, the understanding in molecular terms of TFIID assembly and function remains poorly understood. Histone fold motifs have been shown to be extremely important for the heterodimerization of many TFIID subunits. However, these subunits display several evolutionary conserved noncanonical features when compared with histones, including additional regions whose role is unknown. Here we show that the conserved additional C-terminal region of TFIID subunit TAF6 can be divided into two domains: a small middle domain (TAF6M) and a large C-terminal domain (TAF6C). Our crystal structure of the TAF6C domain from Antonospora locustae at 1.9 Å resolution reveals the presence of five conserved HEAT repeats. Based on these data, we designed several mutants that were introduced into full-length human TAF6. Surprisingly, the mutants affect the interaction between TAF6 and TAF9, suggesting that the formation of the complex between these two TFIID subunits do not only depend on their histone fold motifs. In addition, the same mutants affect even more strongly the interaction between TAF6 and TAF9 in the context of a TAF5-TAF6-TAF9 complex. Expression of these mutants in HeLa cells reveals that most of them are unstable, suggesting their poor incorporation within endogenous TFIID. Taken together, our results suggest that the conserved additional domains in histone fold-containing subunits of TFIID and of co-activator SAGA are important for the assembly of these complexes.


Asunto(s)
Complejos Multiproteicos/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Células HeLa , Humanos , Complejos Multiproteicos/genética , Mutación , Estructura Terciaria de Proteína , Secuencias Repetitivas de Aminoácido , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética
17.
Parasitology ; 140(11): 1346-56, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23880415

RESUMEN

The microsporidian parasite Nosema ceranae is a common pathogen of the Western honeybee (Apis mellifera) whose variable virulence could be related to its genetic polymorphism and/or its polyphenism responding to environmental cues. Since the genotyping of N. ceranae based on unique marker sequences had been unsuccessful, we tested whether a multilocus approach, assessing the diversity of ten genetic markers ­ encoding nine proteins and the small ribosomal RNA subunit ­ allowed the discrimination between N. ceranae variants isolated from single A. mellifera individuals in four distant locations. High nucleotide diversity and allele content were observed for all genes. Most importantly, the diversity was mainly present within parasite populations isolated from single honeybee individuals. In contrast the absence of isolate differentiation precluded any taxa discrimination, even through a multilocus approach, but suggested that similar populations of parasites seem to infect honeybees in distant locations. As statistical evolutionary analyses showed that the allele frequency is under selective pressure, we discuss the origin and consequences of N. ceranae heterozygosity in a single host and lack of population divergence in the context of the parasite natural and evolutionary history.


Asunto(s)
Abejas/microbiología , Variación Genética , Tipificación de Secuencias Multilocus/veterinaria , Nosema/genética , Secuencias de Aminoácidos , Animales , Secuencia de Bases , Evolución Biológica , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Proteínas Fúngicas/genética , Marcadores Genéticos/genética , Genotipo , Haplotipos , Desequilibrio de Ligamiento , Nosema/aislamiento & purificación , Filogenia , Polimorfismo Genético , Recombinación Genética , Alineación de Secuencia/veterinaria , Análisis de Secuencia de ADN/veterinaria
18.
Noncoding RNA Res ; 8(3): 363-375, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37275245

RESUMEN

Anncaliia algerae belongs to microsporidia, a group of obligate intracellular parasites related to fungi. These parasites are largely spread in water and food-webs and can infect a wide variety of hosts ranging from invertebrates to vertebrates including humans. In humans, microsporidian infections are mainly opportunistic as immunocompetent hosts can clear parasites naturally. Recent studies however have reported persistent microsporidian infections and have highlighted them as a risk factor in colon cancer. This may be a direct result of cell infection or may be an indirect effect of the infectious microenvironment and the host's response. In both cases, this raises the question of the effects of microsporidian infection at the host and host-cell levels. We aimed to address the question of human host intracellular response to microsporidian infection through a transcriptomic kinetic study of human foreskin fibroblasts (HFF) infected with A.algerae, a human infecting microsporidia with an exceptionally wide host range. We focused solely on host response studying both coding and small non-coding miRNA expression. Our study revealed a generalized down-regulation of cell miRNAs throughout infection with up to 547 different miRNAs downregulated at some timepoints and also transcriptomic dysregulations that could facilitate parasite development with immune and lipid metabolism genes modulation. We also hypothesize possible small nucleic acid expropriation explaining the miRNA downregulation. This work contributes to a better understanding of the dialogue that can occur between an intracellular parasite and its host at the cellular level, and can guide future studies on microsporidian infection biology to unravel the mode of action of these minimalist parasites at the tissue or host levels.We have also generated a kinetic and comprehensive transcriptomic data set of an infectious process that can help support comparative studies in the broader field of parasitology. Lastly, these results may warrant for caution regarding microsporidian exposure and persistent infections.

19.
Front Microbiol ; 14: 1168970, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125152

RESUMEN

Microsporidia are obligate intracellular parasites related to fungi that cause severe infections in immunocompromised individuals. Encephalitozoon cuniculi is a microsporidian species capable of infecting mammals, including human and rodents. In response to microsporidian infection, innate immune system serves as the first line of defense and allows a partial clearance of the parasite via the innate immune cells, namely macrophages, neutrophils, dendritic cells, and Natural Killer cells. According to the literature, microsporidia bypass this response in vitro by modulating the response of macrophages. In order to study host-parasites interactions in vivo, we developed a model using the mouse ear pinna in combination with an intravital imaging approach. Fluorescent E. cuniculi spores were inoculated into the skin tissue to follow for the first time in real time in an in vivo model the recruitment dynamics of EGFP + phagocytic cells in response to the parasite. The results show that parasites induce an important inflammatory recruitment of phagocytes, with alterations of their motility properties (speed, displacement length, straightness). This cellular response persists in the injection zone, with spores detected inside the phagocytes up to 72 h post-infection. Immunostainings performed on ear tissue cryosections evoke the presence of developing infectious foci from 5 days post-infection, in favor of parasite proliferation in this tissue. Overall, the newly set up mice ear pinna model will increase our understanding of the immunobiology of microsporidia and in particular, to know how they can bypass and hijack the host immune system of an immunocompetent or immunosuppressed host.

20.
Metabolites ; 13(2)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36837804

RESUMEN

Among the various "omics" approaches that can be used in toxicology, volatolomics is in full development. A volatolomic study was carried out on soil bacteria to validate the proof of concept, and this approach was implemented in a new model organism: the honeybee Apis mellifera. Emerging bees raised in the laboratory in pain-type cages were used. Volatolomics analysis was performed on cuticles, fat bodies, and adhering tissues (abdomens without the digestive tract), after 14 and 21 days of chronic exposure to 0.5 and 1 µg/L of fipronil, corresponding to sublethal doses. The VOCs analysis was processed using an HS-SPME/GC-MS method. A total of 281 features were extracted and tentatively identified. No significant effect of fipronil on the volatolome could be observed after 14 days of chronic exposure. Mainly after 21 days of exposure, a volatolome deviation appeared. The study of this deviation highlighted 11 VOCs whose signal abundances evolved during the experiment. Interestingly, the volatolomics approach revealed a VOC (2,6-dimethylcyclohexanol) that could act on GABA receptor activity (the fipronil target) and VOCs associated with semiochemical activities (pheromones, repellent agents, and compounds related to the Nasonov gland) leading to a potential impact on bee behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA