Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925612

RESUMEN

High-resolution data collection of the urban stormwater network is crucial for future asset management and illicit discharge detection, but often too expensive as sensors and ongoing frequent maintenance works are not affordable. We developed an integrated water depth, electrical conductivity (EC), and temperature sensor that is inexpensive (USD 25), low power, and easily implemented in urban drainage networks. Our low-cost sensor reliably measures the rate-of-change of water level without any re-calibration by comparing with industry-standard instruments such as HACH and HORIBA's probes. To overcome the observed drift of level sensors, we developed an automated re-calibration approach, which significantly improved its accuracy. For applications like monitoring stormwater drains, such an approach will make higher-resolution sensing feasible from the budget control considerations, since the regular sensor re-calibration will no longer be required. For other applications like monitoring wetlands or wastewater networks, a manual re-calibration every two weeks is required to limit the sensor's inaccuracies to ±10 mm. Apart from only being used as a calibrator for the level sensor, the conductivity sensor in this study adequately monitored EC between 0 and 10 mS/cm with a 17% relative uncertainty, which is sufficient for stormwater monitoring, especially for real-time detection of poor stormwater quality inputs. Overall, our proposed sensor can be rapidly and densely deployed in the urban drainage network for revolutionised high-density monitoring that cannot be achieved before with high-end loggers and sensors.

2.
Microb Ecol ; 79(2): 259-270, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31384980

RESUMEN

Faecal contamination poses health risks for the recreational users of urban estuaries. However, our understanding of the potential pathogenicity of faecal microbes in these environments is limited. To this end, a study was conducted to understand the spatial and seasonal distribution of Salmonella in water and sediments of the Yarra River estuary, Melbourne, Australia. Among 210 samples in total, culturable Salmonella were recovered from 27%, 17%, and 19% of water, bank, and bed sediment samples, respectively. The combined detection increased from 15% in winter to 32% in summer (p < 0.05) indicating seasonal variation as potential part of public health risk assessments. Further, pathogenic potential of the Salmonella isolates was characterised via the quantification of attachment and invasion capacity using human epithelial colorectal cell line Caco-2 on a subset of isolates (n = 62). While all of these isolates could attach and invade Caco-2 cells, 52% and 13% of these showed greater attachment and invasiveness, respectively, than the corresponding mean values for S. Typhimurium ATCC14028 control. Isolates from winter were on average more invasive (seven out of eight isolates with the highest invasiveness recovered from the colder sampling period) than the isolates from summer, and Salmonella collected during summer showed lower invasion (p < 0.05) compared with the control. Similar low invasion compared with the same control was observed for isolates recovered from bank sediment (p < 0.05). While the higher prevalence in summer may imply higher risks during these peak recreational periods, it is essential that this information is used in combination with quantitative microbial risk assessments to fully understand the health risks posed by Salmonella in microtidal estuaries.


Asunto(s)
Células CACO-2/microbiología , Heces/microbiología , Salmonella/aislamiento & purificación , Salmonella/fisiología , Ciudades , Estuarios , Humanos , Intestinos/microbiología , Estaciones del Año , Victoria , Virulencia
3.
J Environ Manage ; 261: 110173, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32148263

RESUMEN

Green walls that effectively treat greywater have the potential to become a part of the solution for the issues of water scarcity and pollution control in our cities. To develop reliable and efficient designs of such systems, the following two research questions were addressed: what would be the optimal design of a green wall for greywater treatment, and how tall should the system be to assure adequate treatment. This paper reports on (i) a long-term pollutant removal comparison study of two typical green wall configurations: pot and block designs, and (ii) a short-term profile study exploring pollutant retention at different heights of a three-level green wall, across different plant species. Removal of suspended solids (TSS), nitrogen (TN), phosphorus (TP), chemical oxygen demand (COD) and Escherichia coli was tested, as well as various physical parameters. Pot and block designs were found to exhibit similar pollutant removal performance for standard and high inflow concentrations, while the block design was more resistant to drying. However, due to its multiple practical advantages, pot designs are favoured. The greatest removal was achieved within the top green wall level for all studied pollutants, while subsequent levels facilitated further removal of TSS, COD, and TN. Interestingly, colour, pH, and EC increased after each green wall level, which must be taken into account to determine the maximum height of these systems. The optimal size of the system was found to be dependent on plant species choice. The results were used to create practical recommendations for the effective design of greywater treatment green walls.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Análisis de la Demanda Biológica de Oxígeno , Ciudades , Color , Nitrógeno , Aguas Residuales
4.
J Environ Manage ; 241: 12-21, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30981139

RESUMEN

Pollution build-up and wash-off processes are often included in urban stormwater quality models. However, these models are often unreliable and have poor performance at large scales and in complicated catchments. This study tried to improve stormwater quality models by adopting the genetic programming (GP) approach to generate new build-up algorithms for three different pollutants (total suspend solids - TSS, total phosphorus - TP and total nitrogen - TN). This was followed by testing of the new models (also traditional build-up and wash-off models as benchmark) using data collected from different catchments in Australia and the USA. The GP approach informed new sets of build-up algorithms with the inclusion of not just the typical antecedent dry weather period (ADWP), but also other less 'traditional' variables - previous rainfall depth for TSS and maximum air temperatures for TP and TN simulation. The traditional models had relatively poor performance (Nash-Sutcliffe coefficient, E < 0.0), except for TP at Gilby Road (GR) (E = 0.21 in calibration and 0.43 in validation). Improved performance was observed using the models with new build-up algorithms informed by GP. Taking TP at GR for example, the best performing model had E of 0.46 in calibration and 0.54 in validation. The best performing models for TSS, TP, and TN are often different, suggesting that specific models shall be used for different pollutants. Insights into further improvements possible for stormwater quality models were given. It is recommended that in addition to the typical build-up and wash-off process, new generations of stormwater quality models should be able to account for the non-conventional pollutant sources (e.g. cross-connections, septic tank leakage, illegal discharges) through stochastic approaches. Emission inventories with information like intensity-frequency-duration (IFD) of pollutant loads from each type of non-conventional source are suggested to be built for stochastic modelling.


Asunto(s)
Lluvia , Contaminantes Químicos del Agua , Algoritmos , Australia , Monitoreo del Ambiente , Movimientos del Agua
5.
J Environ Manage ; 246: 203-213, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31176982

RESUMEN

To support sustainable urban planning and the design of water pollution mitigation strategies, the spatial and temporal trends of water quality in urban streams needs to be further understood. This study analyses over ten years of surface water quality data from 53 upstream catchments (20 of them predominated by a single type of land use) and two lowland sites across Greater Melbourne, Australia. We evaluated the impact of various catchment characteristics, especially urban land uses, on spatial and temporal urban water quality trends. Here, we focused on common urban pollutants: total suspended solids (TSS), total phosphorous (TP), total nitrogen (TN), zinc (Zn), copper (Cu) and nickel (Ni). Site median nutrient and heavy metal concentrations were negatively correlated with the catchment's elevation and its average annual rainfall. Further analysis shows that such trends were driven by the geographical pattern of Melbourne - i.e. low-laying sites tend to have less rainfall and be more urbanised. Only median concentrations of heavy metals (Zn and Cu) were correlated to catchment imperviousness. Further characterising of the urban environment was done into specific land uses (residential, industrial and commercial), yet median concentrations of all pollutants were not significantly correlated with land uses. This is because simple metrics, such as land use proportions, do not adequately reflect the significant variability in pollution sources that can exist even within the same land use type. Indeed, our temporal analysis found that the water quality difference between catchments with similar land uses is likely caused by their site-specific pollutant sources (construction and illegal discharge) and environmental management actions (wastewater management actions) regardless of similarities in land use. A 3-stage urbanisation cycle (development, operation and renewal) is suggested to further explain the urban water quality variance, but more data from small areas of an urban catchment is required to directly understand the unique impact of each urbanisation stage on water quality.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Australia , Monitoreo del Ambiente , Calidad del Agua
6.
Environ Sci Technol ; 51(21): 12498-12507, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29035523

RESUMEN

Campylobacter is a pathogen frequently detected in urban stormwater worldwide. It is one of the leading causes of enteric disease in many developed countries and is the leading cause of enteric disease in Australia. Prior to harvesting stormwater, adequate treatment is necessary to mitigate risks derived from such harmful pathogens. The goal of this research was to estimate the health risks associated with the exposure to Campylobacter when harvesting urban stormwater for toilet flushing and irrigation activities, and the role treatment options play in limiting risks. Campylobacter data collected from several urban stormwater systems in Victoria, Australia, were the inputs of a Quantitative Microbial Risk Assessment model. The model included seven treatment scenarios, spanning wetlands, biofilters, and more traditional treatment trains including those recommended by the Australian Guidelines for Water Recycling. According to our modeling and acceptable risk thresholds, only two treatment scenarios could supply water of sufficient quality for toilet flushing and irrigation end-uses: (1) using stormwater biofilters coupled with UV-treatment and (2) a more conventional coagulation, filtration, UV, and chlorination treatment plant. Importantly, our modeling results suggest that current guidelines in place for stormwater reuse are not adequate for protecting against exposure to Campylobacter. However, more research is required to better define whether the Campylobacter detectable in stormwater are pathogenic to humans.


Asunto(s)
Campylobacter , Filtración , Humanos , Lluvia , Reciclaje , Victoria , Humedales
7.
Environ Sci Technol ; 51(7): 3703-3713, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28272882

RESUMEN

Stormwater biofilters are dynamic environments, supporting diverse processes that act to capture and transform incoming pollutants. However, beneficial water treatment processes can be accompanied by undesirable greenhouse gas production. This study investigated the potential for nitrous oxide (N2O) and methane (CH4) generation in dissolved form at the base of laboratory-scale stormwater biofilter columns. The influence of plant presence, species, inflow frequency, and inclusion of a saturated zone and carbon source were studied. Free-draining biofilters remained aerobic with negligible greenhouse gas production during storm events. Designs with a saturated zone were oxygenated at their base by incoming stormwater before anaerobic conditions rapidly re-established, although extended dry periods allowed the reintroduction of oxygen by evapotranspiration. Production of CH4 and N2O in the saturated zone varied significantly in response to plant presence, species, and wetting and drying. Concentrations of N2O typically peaked rapidly following stormwater inundation, associated with limited plant root systems and poorer nitrogen removal from biofilter effluent. Production of CH4 also commenced quickly but continued throughout the anaerobic interevent period and lacked clear relationships with plant characteristics or nitrogen removal performance. Dissolved greenhouse gas concentrations were highly variable, but peak concentrations of N2O accounted for <1.5% of the incoming total nitrogen load. While further work is required to measure surface emissions, the potential for substantial release of N2O or CH4 in biofilter effluent appears relatively low.


Asunto(s)
Desnitrificación , Nitrógeno , Metano , Óxido Nitroso , Purificación del Agua
8.
Environ Sci Technol ; 51(4): 2280-2287, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28068476

RESUMEN

Phosphorus, a critical environmental pollutant, is effectively removed from stormwater by biofiltration systems, mainly via sedimentation and straining. However, the fate of dissolved inflow phosphorus concentrations in these systems is unknown. Given the growing interest in using biofiltration systems to treat other polluted waters, for example greywater, such an understanding is imperative to optimize designs for successful long-term performance. A mass balance method and a radiotracer, 32P (as H3PO4), were used to investigate the partitioning of phosphorus (concentrations of 2.5-3.5 mg/L, >80% was in dissolved inorganic form) between the various biofilter components at the laboratory scale. Planted columns maintained a phosphorus removal efficiency of >95% over the 15-week study period. Plant storage was found to be the dominant phosphorus sink (64% on average). Approximately 60% of the phosphorus retained in the filter media was recovered in the top 0-6 cm. The 32P tracer results indicate that adsorption is the immediate primary fate of dissolved phosphorus in the system (up to 57% of input P). Plant assimilation occurs at other times, potentially liberating sorption sites for processing of subsequent incoming phosphorus. Plants with high nutrient uptake capacities and the ability to efficiently extract soil phosphorus, for example Carex appressa, are, thus, recommended for use in greywater biofilters.


Asunto(s)
Nitrógeno , Fósforo , Filtración , Plantas , Contaminación del Agua
10.
Water Sci Technol ; 73(3): 628-35, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26877046

RESUMEN

When assigning site-specific restoration targets for deteriorating aquatic systems, it is necessary to have an understanding of the undisturbed or background state of the system. However, the site-specific characteristics of aquatic systems prior to disturbance are mostly unknown, due to the lack of historical water and sediment quality data. This study aims to introduce a method for filling this gap in our understanding, using dated sediment cores from the beds of aquatic environments. We used Bolin Billabong, a floodplain lake of the Yarra River (South-East Australia), as a case study to demonstrate the application of this method. We identified the concentrations of aluminium, cadmium, chromium, copper, iron, lead, manganese, nickel, tin and zinc at 8 cm intervals through the sediment core. This showed that aluminium, chromium, copper, iron, lead, nickel, tin and zinc concentrations in Bolin Billabong sediments significantly increased after European settlement in the river catchment in the mid-19th century. The differences between current Australian sediment quality guidelines trigger values and the background metal concentrations in Bolin Billabong sediments underscore the value of using locally relevant background toxicant concentrations when setting water and sediment quality targets.


Asunto(s)
Monitoreo del Ambiente/métodos , Restauración y Remediación Ambiental , Sedimentos Geológicos/análisis , Lagos/química , Metales/análisis , Contaminantes Químicos del Agua/análisis , Factores de Tiempo , Victoria
11.
Water Sci Technol ; 72(9): 1472-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26524437

RESUMEN

Urban stormwater is regarded as a key input of faecal contamination in receiving water bodies and therefore, a major concern for health risks associated with aquatic recreation. Wastewater leakages, cross connections and overflows, together with faeces washed from surfaces during rainfall events, are possible origins of faecal contamination which enter these water bodies through stormwater drains. This paper applies conceptual models to a case study of the Yarra River estuary to understand the relative importance of fluxes derived from an urban creek and the 219 urban stormwater pipes which drain directly to the estuary as compared with other inputs, such as the Yarra River itself. Existing hydrologic-microorganism models were used for the estimation of the inputs from riverine and urban stormwater fluxes. These predictions were applied as boundary conditions for a new, highly simplified, model which accounts for the transport and survival of faecal microorganisms in the estuary. All models were calibrated using a rich dataset, containing over 2,000 measured Escherichia coli concentrations. Mass balances from the riverine and stormwater models indicate the limited influence of urban stormwater drains on the estuary during dry weather; less than 0.05% to 10% (5th and 95th percentile; median 0.5%) of the total daily E. coli load entering the estuary was derived from urban stormwater drains. While wet weather contributions from stormwater drains could be more significant (2% to 50%; 5th and 95th percentile), the average contribution remained marginal (median 10%). Sensitivity testing of the estuarine microorganism model by switching off stormwater boundary conditions resulted in minimal model efficiency reduction; this may reflect the low average daily contribution from urban stormwater drains. While these results confirm previous studies which show that E. coli loads derived from stormwater drains are dwarfed by other inputs, it is essential to note that these results also demonstrate that some conditions reveal the opposite; high proportions from stormwater are possible when combined with low riverine inputs and high urban rainfall. Furthermore, this study focuses on the overall impacts of direct urban stormwater inputs on the faecal contamination levels within the estuary, and localized impacts would certainly require further investigation.


Asunto(s)
Escherichia coli , Estuarios , Modelos Teóricos , Microbiología del Agua , Contaminación del Agua , Ciudades , Monitoreo del Ambiente , Heces , Ríos , Aguas Residuales , Tiempo (Meteorología)
12.
Water Sci Technol ; 71(1): 149-56, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25607682

RESUMEN

This study showcases the dynamic simulation capabilities of the Urban Biophysical Environments And Technologies Simulator (UrbanBEATS) on a Melbourne catchment. UrbanBEATS simulates the planning, design and implementation of water sensitive urban design (WSUD) infrastructure in urban environments. It considers explicitly the interaction between urban and water infrastructure planning through time. The model generates a large number of realizations of different WSUD interventions and their evolution through time based on a user-defined scenario. UrbanBEATS' dynamics was tested for the first time on a historical case study of Scotchman's Creek catchment and was trained using historical data (e.g. planning documents, narratives, urban development and societal information) to adequately reproduce patterns of uptake of specific WSUD technologies. The trained model was also used to explore the implications of more stringent future water management objectives. Results highlighted the challenges of meeting this legislation and the opportunities that can be created through the mix of multiple spatial scales.


Asunto(s)
Planificación de Ciudades/tendencias , Modelos Teóricos , Calidad del Agua , Abastecimiento de Agua/análisis , Victoria
13.
Ambio ; 43(8): 1093-111, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24973053

RESUMEN

Developing countries struggle to provide adequate urban water services, failing to match infrastructure with urban expansion. Despite requiring an improved understanding of alternative infrastructure performance when considering future investments, integrated modeling of urban water systems is infrequent in developing contexts. This paper presents an integrated modeling methodology that can assist strategic planning processes, using Port Vila, Vanuatu, as a case study. 49 future model scenarios designed for the year 2050, developed through extensive stakeholder participation, were modeled with UVQ (Urban Volume and Quality). The results were contrasted with a 2015 model based on current infrastructure, climate, and water demand patterns. Analysis demonstrated that alternative water servicing approaches can reduce Port Vila's water demand by 35 %, stormwater generation by 38 %, and nutrient release by 80 % in comparison to providing no infrastructural development. This paper demonstrates that traditional centralized infrastructure will not solve the wastewater and stormwater challenges facing rapidly growing urban cities in developing countries.


Asunto(s)
Conservación de los Recursos Naturales , Países en Desarrollo , Modelos Teóricos , Abastecimiento de Agua , Vanuatu
14.
Water Sci Technol ; 69(6): 1312-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24647199

RESUMEN

The use of biofilters to remove nitrogen and other pollutants from urban stormwater runoff has demonstrated varied success across laboratory and field studies. Design variables including plant species and use of a saturated zone have large impacts upon performance. A laboratory column study of 22 plant species and designs with varied outlet configuration was conducted across a 1.5-year period to further investigate the mechanisms and influences driving biofilter nitrogen processing. This paper presents outflow concentrations of total nitrogen from two sampling events across both 'wet' and 'dry' frequency dosing, and from sampling across two points in the outflow hydrograph. All plant species were effective under conditions of frequent dosing, but extended drying increased variation between species and highlighted the importance of a saturated zone in maintaining biofilter function. The saturated zone also effectively treated the volume of stormwater stored between inflow events, but this extended detention provided no additional benefit alongside the rapid processing of the highest performing species. Hence, the saturated zone reduced performance differences between plant species, and potentially acts as an 'insurance policy' against poor sub-optimal plant selection. The study shows the importance of biodiversity and inclusion of a saturated zone in protecting against climate variability.


Asunto(s)
Nitrógeno/aislamiento & purificación , Plantas , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua , Humedales , Hidrología , Victoria , Australia Occidental
15.
Water Res ; 258: 121782, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38788526

RESUMEN

Urban stormwater, increasingly seen as a potential water resource for cities and towns, contains various trace organic chemicals (TrOCs). This study, conducted through a comprehensive literature review of 116 publications, provides a detailed report on the occurrence, concentration distribution, health, and ecological risks of TrOCs, as well as the impact of land use and rainfall characteristics on their concentrations. The review uncovers a total of 629 TrOCs detected at least once in urban stormwater, including 228 pesticides, 132 pharmaceutical and personal care products (PPCPs), 29 polycyclic aromatic hydrocarbons (PAHs), 30 per- and polyfluorinated substances (PFAS), 28 flame retardants, 24 plasticizers, 22 polychlorinated biphenyls (PCBs), nine corrosion inhibitors, and 127 other industrial chemicals/intermediates/solvents. Concentration distributions were explored, with the best fit being log-normal distribution. Risk assessment highlighted 82 TrOCs with high ecological risk quotients (ERQ > 1.0) and three with potential health risk quotients (HQ > 1.0). Notably, 14 TrOCs (including six PAHs, five pesticides, three flame-retardants, and one plasticizer) out of 68 analyzed were significantly influenced by land-use type. Relatively weak relationships were observed between rainfall characteristics and pollutant concentrations, warranting further investigation. This study provides essential information about the occurrence and risks of TrOCs in urban stormwater, offering valuable insights for managing these emerging chemicals of concern.


Asunto(s)
Compuestos Orgánicos , Lluvia , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Compuestos Orgánicos/análisis , Monitoreo del Ambiente , Ciudades , Medición de Riesgo , Hidrocarburos Policíclicos Aromáticos/análisis
16.
Water Sci Technol ; 68(10): 2136-43, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24292459

RESUMEN

There is increasing awareness about uncertainties in the modelling of urban drainage systems and, as such, many new methods for uncertainty analyses have been developed. Despite this, all available methods have limitations which restrict their widespread application among practitioners. Here, a modified Monte-Carlo based method is presented that reduces the subjectivity inherent in typical uncertainty approaches (e.g. cut-off thresholds), while using tangible concepts and providing practical outcomes for practitioners. The method compares the model's uncertainty bands to the uncertainty inherent in each measured/observed datapoint; an issue that is commonly overlooked in the uncertainty analysis of urban drainage models. This comparison allows the user to intuitively estimate the optimum number of simulations required to conduct uncertainty analyses. The output of the method includes parameter probability distributions (often used for sensitivity analyses) and prediction intervals. To demonstrate the new method, it is applied to a conceptual rainfall-runoff model (MOPUS) using a dataset collected from Melbourne, Australia.


Asunto(s)
Ciudades , Drenaje de Agua , Modelos Estadísticos , Método de Montecarlo , Incertidumbre
17.
Water Sci Technol ; 68(3): 714-21, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23925202

RESUMEN

This article reports on the ongoing work and research involved in the development of a socio-technical model of urban water systems. Socio-technical means the model is not so much concerned with the technical or biophysical aspects of urban water systems, but rather with the social and institutional implications of the urban water infrastructure and vice versa. A socio-technical model, in the view purported in this article, produces scenarios of different urban water servicing solutions gaining or losing influence in meeting water-related societal needs, like potable water, drainage, environmental health and amenity. The urban water system is parameterised with vectors of the relative influence of each servicing solution. The model is a software implementation of the Multi-Pattern Approach, a theory on societal systems, like urban water systems, and how these develop and go through transitions under various internal and external conditions. Acknowledging that social dynamics comes with severe and non-reducible uncertainties, the model is set up to be exploratory, meaning that for any initial condition several possible future scenarios are produced. This article gives a concise overview of the necessary theoretical background, the model architecture and some initial test results using a drainage example.


Asunto(s)
Ciudades , Drenaje de Agua , Modelos Teóricos , Abastecimiento de Agua , Simulación por Computador , Salud Ambiental , Humanos , Programas Informáticos
18.
Water Sci Technol ; 68(8): 1857-65, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24185071

RESUMEN

With global change bringing about greater challenges for the resilient planning and management of urban water infrastructure, research has been invested in the development of a strategic planning tool, DAnCE4Water. The tool models how urban and societal changes impact the development of centralised and decentralised (distributed) water infrastructure. An algorithm for rigorous assessment of suitable decentralised stormwater management options in the model is presented and tested on a local Melbourne catchment. Following detailed spatial representation algorithms (defined by planning rules), the model assesses numerous stormwater options to meet water quality targets at a variety of spatial scales. A multi-criteria assessment algorithm is used to find top-ranking solutions (which meet a specific treatment performance for a user-defined percentage of catchment imperviousness). A toolbox of five stormwater technologies (infiltration systems, surface wetlands, bioretention systems, ponds and swales) is featured. Parameters that set the algorithm's flexibility to develop possible management options are assessed and evaluated. Results are expressed in terms of 'utilisation', which characterises the frequency of use of different technologies across the top-ranking options (bioretention being the most versatile). Initial results highlight the importance of selecting a suitable spatial resolution and providing the model with enough flexibility for coming up with different technology combinations. The generic nature of the model enables its application to other urban areas (e.g. different catchments, local municipal regions or entire cities).


Asunto(s)
Algoritmos , Planificación de Ciudades/métodos , Abastecimiento de Agua , Australia , Modelos Teóricos , Política , Estanques , Calidad del Agua , Humedales
19.
Water Res ; 247: 120793, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37944196

RESUMEN

Biofilters with real time control (RTC) have great potential to remove microbes from stormwater to protect human health for uses such as swimming and harvesting. However, RTC strategies need to be further explored and optimised for each specific location or end-use. This paper demonstrates that the newly developed BioRTC model can fulfil this requirement and allow effective and efficient exploration of the potential of RTC applications. We describe the development of BioRTC as the first RTC model for stormwater biofilters, including: selection of a 'base' model for microbial removal prediction, its modification to include RTC capabilities, as well as calibration and validation. BioRTC adequately predicted the performance of two previously developed RTC strategies, with Nash Sutcliffe Efficiency (Ec) ranging from 0.65 to 0.80. In addition, high parameter transferability was demonstrated during model validation, where we employed the parameter sets calibrated for another biofilter study without RTC to predict the performance of RTC biofilters. We then employed the BioRTC model to explore RTC applications on a hypothetical biofilter system located at the outlet of an existing catchment. With different scenarios, we tested the impact of input parameters such as RTC set-points and design characteristics, and evaluated the influence of operational conditions on the microbial removal performance of the hypothetical biofilter with RTC. The results showed that strategy rules, set-point values, and biofilter design all govern the performance of RTC biofilters, and that operational conditions could impact the suitability of different RTC strategies. Particularly, the presence of Pareto fronts established that muti-objective optimisation is necessary to balance competing needs. These results underscore the importance of RTC, which allows for local experimentation, climate change adaptation, and adjustment to changing demands for the harvested water. Furthermore, they illustrate the practical use of the newly developed BioRTC model, enabling researchers and practitioners to explore and assess potential RTC strategies and scenarios quickly and cost-effectively.


Asunto(s)
Purificación del Agua , Humanos , Purificación del Agua/métodos , Filtración/métodos , Escherichia coli , Lluvia , Calibración
20.
Sci Total Environ ; 898: 166375, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37598967

RESUMEN

Photoelectrochemical oxidation (PECO) is a promising advanced technology for treating micropollutants in stormwater. However, it is important to understand its operation prior to practical validation. In this study, we introduced a flow PECO system designed to evaluate its potential for full-scale applications in herbicides degradation, providing valuable insights for future large-scale implementations. The PECO flow reactor demonstrated the ability to treat a larger volume of stormwater (675 mL, approximately 10 times more than previous batch experiments) with effective removal rates of 92 % for diuron and 22 % for atrazine over 6 h of operation at 2 V. To address the large volume issue in stormwater treatment, a multiple module parallel application design is being considered to increase the treatment capacity of the PECO flow reactor. During the flow reactor operations, flow rate was found to have a notable impact on removal performance, particularly for diuron. At a flow rate of 610 mL min-1, approximately 90 % removal of diuron was achieved, while at 29 mL min-1, the removal efficiency decreased to 60 %. While light intensity had minimal effect on diuron degradation (all settings achieved over 90 % removal), it enhanced atrazine degradation from 9 % to 31 % with an increase in intensity from 63 mW cm-2 to 144 mW cm-2. Remarkably, the PECO flow system exhibited excellent removal performance (>90 % removal) for diuron even at extremely high initial pollutant concentrations (240 µg L-1), demonstrating its capacity to handle varying contaminant loads in stormwater. Energy consumption analysis revealed that flow rate as the primary factor influenced the specific energy consumption rate. Higher flow rate (e.g., 610 mL min-1) were preferable in flow reactor due to its well-balanced performance between removal and energy consumption. These findings confirm that the PECO flow system offers an efficient and promising approach for stormwater treatment applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA