RESUMEN
It was recently suggested that supplying the brain with new neurons could counteract Alzheimer's disease (AD). This provocative idea requires further testing in experimental models in which the molecular basis of disease-induced neuronal regeneration could be investigated. We previously found that zebrafish stimulates neural stem cell (NSC) plasticity and neurogenesis in AD and could help to understand the mechanisms to be harnessed for developing new neurons in diseased mammalian brains. Here, by performing single-cell transcriptomics, we found that amyloid toxicity-induced interleukin-4 (IL4) promotes NSC proliferation and neurogenesis by suppressing the tryptophan metabolism and reducing the production of serotonin. NSC proliferation was suppressed by serotonin via down-regulation of brain-derived neurotrophic factor (BDNF)-expression in serotonin-responsive periventricular neurons. BDNF enhances NSC plasticity and neurogenesis via nerve growth factor receptor A (NGFRA)/ nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NFkB) signaling in zebrafish but not in rodents. Collectively, our results suggest a complex neuron-glia interaction that regulates regenerative neurogenesis after AD conditions in zebrafish.
Asunto(s)
Enfermedad de Alzheimer , Comunicación Celular/fisiología , Regeneración Nerviosa/fisiología , Neurogénesis/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Factores de Edad , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Encéfalo/fisiología , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Transgénicos , Regeneración Nerviosa/genética , Células-Madre Neurales/patología , Células-Madre Neurales/fisiología , Neuroinmunomodulación/fisiología , Plasticidad Neuronal/fisiología , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Serotonina/genética , Serotonina/metabolismo , Transducción de Señal/genética , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
In most taxa, halving of chromosome numbers during meiosis requires that homologous chromosomes (homologues) pair and form crossovers. Crossovers emerge from the recombination-mediated repair of programmed DNA double-strand breaks (DSBs). DSBs are generated by SPO11, whose activity requires auxiliary protein complexes, called pre-DSB recombinosomes. To elucidate the spatiotemporal control of the DSB machinery, we focused on an essential SPO11 auxiliary protein, IHO1, which serves as the main anchor for pre-DSB recombinosomes on chromosome cores, called axes. We discovered that DSBs restrict the DSB machinery by at least four distinct pathways in mice. Firstly, by activating the DNA damage response (DDR) kinase ATM, DSBs restrict pre-DSB recombinosome numbers without affecting IHO1. Secondly, in their vicinity, DSBs trigger IHO1 depletion mainly by another DDR kinase, ATR. Thirdly, DSBs enable homologue synapsis, which promotes the depletion of IHO1 and pre-DSB recombinosomes from synapsed axes. Finally, DSBs and three DDR kinases, ATM, ATR and PRKDC, enable stage-specific depletion of IHO1 from all axes. We hypothesize that these four negative feedback pathways protect genome integrity by ensuring that DSBs form without excess, are well-distributed, and are restricted to genomic locations and prophase stages where DSBs are functional for promoting homologue pairing and crossover formation.
Asunto(s)
Roturas del ADN de Doble Cadena , Meiosis/genética , ATPasas Asociadas con Actividades Celulares Diversas/fisiología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/fisiología , Emparejamiento Cromosómico , Retroalimentación Fisiológica , Gametogénesis , Ratones , Fase Paquiteno , Cromosomas Sexuales , Transducción de SeñalRESUMEN
Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.
Asunto(s)
Proteínas de Ciclo Celular , Roturas del ADN de Doble Cadena , Ratones , Animales , Proteínas de Ciclo Celular/metabolismo , ADN , Meiosis/genética , Complejo Sinaptonémico/metabolismo , Recombinación Genética , Recombinación HomólogaRESUMEN
Programmed DNA double-strand break (DSB) formation is a unique meiotic feature that initiates recombination-mediated linking of homologous chromosomes, thereby enabling chromosome number halving in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We discovered in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms, which are based on a DBF4-dependent kinase (DDK)-modulated interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.
RESUMEN
Maladaptive insulin signaling is a key feature in the pathogenesis of severe metabolic disorders, including obesity and diabetes. Enhancing insulin sensitivity represents a major goal in the treatment of patients affected by diabetes. Here, we identify transforming growth factor-ß1 stimulated clone 22 D4 (TSC22D4) as a novel interaction partner for protein kinase B/Akt1, a critical mediator of insulin/phosphatidylinositol 3-kinase signaling pathway. While energy deprivation and oxidative stress promote the TSC22D4-Akt1 interaction, refeeding mice or exposing cells to glucose and insulin impairs this interaction, which relies on an intrinsically disordered region (D2 domain) within TSC22D4. Functionally, the interaction with TSC22D4 reduces basal phosphorylation of Akt and its downstream targets during starvation, thereby promoting insulin sensitivity. Genetic, liver-specific reconstitution experiments in mice demonstrate that the interaction between TSC22D4 and Akt1 improves glucose handling and insulin sensitivity. Overall, our findings postulate a model whereby TSC22D4 acts as an environmental sensor and interacts with Akt1 to regulate insulin signaling and glucose metabolism.
Asunto(s)
Resistencia a la Insulina , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Glucosa/metabolismo , Insulina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción , Factor de Crecimiento Transformador beta1RESUMEN
Type 2 diabetes is a metabolic, chronic disorder characterized by insulin resistance and elevated blood glucose levels. Although a large drug portfolio exists to keep the blood glucose levels under control, these medications are not without side effects. More importantly, once diagnosed diabetes is rarely reversible. Dysfunctions in the kidney, retina, cardiovascular system, neurons, and liver represent the common complications of diabetes, which again lack effective therapies that can reverse organ injury. Overall, the molecular mechanisms of how type 2 diabetes develops and leads to irreparable organ damage remain elusive. This review particularly focuses on novel targets that may play role in pathogenesis of type 2 diabetes. Further research on these targets may eventually pave the way to novel therapies for the treatment-or even the prevention-of type 2 diabetes along with its complications.