Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38556769

RESUMEN

Microsatellite instability (MSI) assessment is strongly recommended for colorectal cancer patients, as MSI status is crucial in determining optimal treatment and predicting prognosis. This study evaluated the reliability and accuracy of a novel polymerase chain reaction (PCR)-based 8-loci MSI test kit, a rapid test kit designed to detect MSI, by comparing its performance with immunohistochemistry (IHC) and the National Cancer Institute (NCI) 2B3D Panel. MSI status was determined in 186 formalin-fixed paraffin-embedded (FFPE) colorectal cancer tissue samples with known mismatch repair (MMR) status by IHC using the novel PCR-based 8-loci MSI test kit. Additionally, the consistency between the NCI 2B3D Panel and the novel PCR-based 8-loci panel was compared using 69 FFPE tumor tissues paired with adjacent non-cancerous tissue. The novel PCR-based 8-loci MSI test kit and IHC demonstrated high concordance (overall agreement: 97.8%). However, four samples displayed discordant results, exhibiting MMR deficiency using IHC and microsatellite stability using the novel PCR-based 8-loci MSI test kit. Of the 69 samples reanalyzed using the NCI 2B3D Panel, high concordance with the novel PCR-based 8-loci MSI test kit was observed in 67 of 69 cases (overall agreement: 97.1%). The novel PCR-based 8-loci MSI test kit is a rapid and reliable tool for accurately detecting MSI status in colorectal cancer.

2.
J Sci Food Agric ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629663

RESUMEN

BACKGROUND: Oyster polypeptide (OP) is a mixture of oligopeptides extracted from oysters through enzyme lysis, separation, and purification. It is associated with immunomodulatory effects, but the underlying mechanisms are not known. This study therefore combined proton nuclear magnetic resonance (1H-NMR) urinary metabolomics and 16S rRNA gene sequencing of the gut microbiome to determine the immunoprotective mechanisms of OP in rats subjected to cyclophosphamide-induced immunosuppression. RESULTS: Oyster polypeptide restored the body weight and the structure of spleen and thymus in rats with cyclophosphamide-induced immunosuppression. It upregulated the levels of white blood cells (WBCs), hemoglobin (HGB), platelets (PLT), red blood cells (RBCs), immunoglobulin G (IgG), immunoglobulin M (IgM), cytokines such as interleukin­6 (IL-6) and tumor necrosis factor-α (TNF-α), and increased the numbers of CD3+ and CD4+ T cells in the immunosuppressed rats. The 1H-NMR metabolomics results showed that OP significantly reversed the levels of ten metabolites in urine, including 2-oxoglutarate, citrate, dimethylamine, taurine, N-phenylacetylglycine, alanine, betaine, creatinine, uracil, and benzoate. The 16S rRNA gene sequencing results showed that OP restored the gut microbiome homeostasis by increasing the abundance of beneficial bacteria and reducing the abundance of pathogenic bacteria. Finally, a combination of metabolomics and microbiomics found that the metabolism of taurine and hypotaurine, and the metabolism of alanine, aspartate, and glutamate were disturbed, but these metabolic pathways were restored by OP. CONCLUSION: This study demonstrated that OP had immunoprotective effects in rats with cyclophosphamide-induced immunosuppression by restoring key metabolic pathways and the gut microbiome homeostasis. Our findings provide a framework for further research into the immunoregulatory mechanisms of OP and its potential use in drugs and nutritional supplements. © 2024 Society of Chemical Industry.

3.
Opt Lett ; 48(22): 5915-5918, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966751

RESUMEN

Ultrasound, due to its noninvasive nature, has the potential to enhance or suppress neural activity, making it highly promising for regulating intractable brain disorders. Precise ultrasound stimulation is crucial for improving the efficiency of neural modulation and studying its mechanisms. However, the presence of the skull can cause distortion in the ultrasound field, thereby affecting the accuracy of stimulation. Existing correction methods primarily rely on magnetic resonance guidance and numerical simulation. Due to the large size and high cost, the MR-guided transcranial ultrasound is difficult to be widely applied in small animals. The numerical simulation usually requires further validation and optimization before application, and the most effective method is to visualize the excited ultrasound field. However, the ultrasound field correction methods based on acoustic field visualization are still lacking. Therefore, a shadowgraph-based transient ultrasonic field visualization system is developed, and an ex vivo transcranial ultrasound field correction is performed. By visualizing the ultrasound field with or without a rat skull and then calculating the time difference of each element's ultrasound wavefront, the parameters for ultrasound field correction can be achieved. The experimental results show that this method can improve both the shape and the size of the focal spot, as well as enhance the acoustic pressure at the focus. Overall, the results demonstrate that the ultrasonic field visualization technology can effectively improve the transcranial ultrasound focusing effect and provide a new tool for achieving precise ultrasonic neural modulation.

4.
Phys Chem Chem Phys ; 25(5): 4266-4275, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36688339

RESUMEN

Diffusion of confined water is important in nanofluidic and other water transport systems. In this study, the diffusion of water nanodroplets confined by graphene sheets is investigated based on molecular dynamics simulations. We find that the confined water nanodroplets can achieve a high-speed and directional motion. The impact of the size of water nanodroplets and distance of graphene sheets on diffusion is studied. The results show that the diffusion of confined water nanodroplets is adjustable and the speed is about 3 orders of magnitude faster than that of the self-diffusing water molecules in liquid water. Subsequently, the most suitable morphology of confined nanodroplets for rapid movement is found. We also find that the direction of diffusion of confined water nanodroplets is affected by the thermal vibrations of carbon atoms. Finally, the interaction energy and friction coefficient between confined nanodroplets and graphene sheets are analyzed to give an insight into the fast and directional diffusion behaviors of water nanodroplets. Our results reveal that a variation in the structure of interfacial water molecules with the distance of graphene sheets is the key to the rapid movement of confined water nanodroplets. The phenomena reported here can enrich the knowledge of molecular mechanisms for nanoconfined water systems, and may stimulate more ideas for the rapid removal of confined water.

5.
Bioorg Chem ; 133: 106429, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841048

RESUMEN

The pterostilbene skeleton is a promising chemical scaffold that exerts anti-inflammatory, anti-depressant, and anti-tumor effects. In this study, we aim to reduce in vivo and in vitro toxicity of compound 32 (preliminary work) and maintain its biological activity. A series of novel pterostilbene derivatives (D1-D43) were designed and synthesized, and their anti-inflammatory activities were screened. All compounds were screened to evaluate their inhibitory effect on LPS/Nigericin-induced IL-1ß production and pyroptosis. The structure-activity relationships was deduced, and finally 1-((E)-4-(2-ethoxyethoxy)styryl)-3,5-dimethoxy-2-((E)-2-nitrovinyl)benzene (D22) was found to be a low-toxic compound with most potent inhibitory efficacy (against IL-1ß: IC50 = 2.41 µM). Preliminary mechanism studies showed that compound D22 may affect the assembly of NLRP3 inflammasome by targeting NLRP3 protein, thereby inhibiting the activation of NLRP3 inflammasome. The in vivo anti-inflammatory activity indicated that compound D22 had significant therapeutic effects on DSS-induced mouse acute colitis models.


Asunto(s)
Colitis , Inflamasomas , Estilbenos , Animales , Ratones , Antiinflamatorios/química , Antiinflamatorios/farmacología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Inflamasomas/antagonistas & inhibidores , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estilbenos/química , Estilbenos/farmacología
6.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240160

RESUMEN

Citrus exhibits unique nutritional values. Most citrus cultivars are derived from mutations. However, the effect of these mutations on fruit quality is unclear. We have previously found a yellowish bud mutant in the citrus cultivar 'Aiyuan 38'. Therefore, this study aimed to determine the effect of the mutation on fruit quality. 'Aiyuan 38' (WT) and a bud mutant variant (MT) were used to analyze variations in fruit color variation and flavor substances using colorimetric instruments, high-performance liquid chromatography (HPLC), headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), and odor activity values (OAVs). The mutation in MT conferred yellowish characteristics to its peel. Although the differences in total sugar and acid content of the pulp were not statistically significant between WT and MT, the MT glucose content was significantly lower and the malic acid level was significantly higher. HS-SPME-GC-MS analysis revealed that the MT pulp released more types and contents of volatile organic compounds (VOCs) than the WT, whereas the opposite trend was observed for the peel. Analysis of the OAV revealed that the MT pulp contains 6 unique VOCs, whereas the peel contains only 1. This study provides a useful reference for the study of flavor substances associated with citrus bud mutations.


Asunto(s)
Citrus , Compuestos Orgánicos Volátiles , Citrus/genética , Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis
7.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069133

RESUMEN

In this study, we compared the fruit quality and color of 'Kiyomi' (WT) and its mutant (MT) grafted on Ziyang xiangcheng (Cj) (WT/Cj, MT/Cj), and the MT grafted on Trifoliate orange (Pt) (MT/Pt). The differences in sugar, organic acid, flavonoids, phenols, and volatile substances of the three materials were also analyzed by high performance liquid chromatography (HPLC) and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results showed significant differences in the appearance of WT/Cj, MT/Cj, and MT/Pt. MT/Pt, compared to WT/Cj, MT/Cj, had lower sugar, acid, phenol and flavonoid contents in the pulp. However, MT/Pt pulp was higher in vitamin C (VC), and the peel had significantly higher total phenol and flavonoid contents. In terms of pulp, WT/Cj had the greatest diversity of volatile organic compounds (VOCs). 4-methyl-1-pentanol was significantly higher in MT/Cj pulp, while MT/Pt pulp had a unique octanoic acid, methyl ester. VOCs were more diverse in the peels of the three materials. ß-Myrcene and valencen were significantly higher in MT/Cj peels. In contrast, 16 unique VOCs were detected in MT/Pt, and D-limonene content was significantly higher than in WT/Cj and MT/Cj. The results suggest Trifoliate orange is a suitable rootstock for MT.


Asunto(s)
Citrus , Compuestos Orgánicos Volátiles , Frutas/química , Compuestos Orgánicos Volátiles/análisis , Citrus/química , Fenol , Flavonoides/análisis , Fenoles/análisis , Azúcares/análisis , Microextracción en Fase Sólida/métodos
8.
New Phytol ; 234(3): 1018-1030, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35175637

RESUMEN

Symbiosis between legumes and rhizobia results in the formation of nitrogen-fixing root nodules. Endoreduplication is essential for nodule development and efficient nitrogen fixation; however, the cellular mechanism by which rhizobial infection causes endoreduplication in symbiotic nodules and the roles of the resulting polyploid cells in nitrogen fixation remain largely unknown. Here, we developed a series of different approaches to separate infected cells (ICs) and uninfected cells (UCs) and determined their ploidy levels in soybean (Glycine max) developing nodules. We demonstrated that 4C nuclei exist in both UCs and ICs of developing nodules and that these 4C cells are primarily invaded by rhizobia and subsequently undergo endoreduplication. Furthermore, RNA-sequencing analysis of nuclei with different ploidy levels from soybean nodules at 12 d post-infection (dpi) and 20 dpi showed that 4C cells are predominantly ICs in 12-dpi nodules but UCs in 20-dpi nodules. We conclude that the infection of 4C cells by rhizobia is critical for initiating endoreduplication. These findings provide significant insight into rhizobial infection, nodule endoreduplication and nitrogen fixation in symbiotic nodules.


Asunto(s)
Fabaceae , Rhizobium , Endorreduplicación , Fijación del Nitrógeno , Nódulos de las Raíces de las Plantas , Glycine max/genética , Simbiosis
9.
Ecotoxicol Environ Saf ; 237: 113505, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35462193

RESUMEN

BACKGROUND: A large body of evidence has linked air pollution and temperature with chronic kidney disease (CKD) prevalence and hospitalizations. However, most studies have focused on the influence of heat stress on CKD prevalence, and the potential effect modification of temperature on the association between air pollution and CKD has not been well-investigated. In this study, we examined the associations of the whole temperature spectrum and air pollution with CKD-related hospital visits and explored whether temperature modifies the short-term association of air pollution with CKD-related hospital visits. METHODS AND FINDINGS: We collected 40 276 CKD-related hospital visits from the first Affiliated Hospital of Anhui Medical University and Anhui Provincial Hospital in Hefei, China, during 2015-2019. A two-stage time-series design was conducted to investigate the associations of air pollution and daily mean temperature with CKD-related hospital visits. First, we estimated the associations between air pollution and CKD-related hospital visits as well as temperature and CKD-related hospital visits. Second, we analyzed the associations of air pollution with CKD hospital visits at different temperatures. We found that NO2 exposure and low temperature were associated with an increased risk of CKD-related hospital visits. Low temperature enhanced the association between NO2 exposure and CKD-related hospital visits, with an increase of 4.30% (95% CI: 2.47-5.92%) per 10 µg/m3 increment in NO2 at low temperature. Effect modification of the association between NO2 and the risk of CKD-related hospital visits was stronger at low temperature across the whole population. CONCLUSIONS: Our findings indicate that low temperature-related chronic kidney damage should be of immediate public health concern. Impact of NO2 exposure on the risk of CKD-related hospital visits may increase under the low temperature, which suggests the need for NO2 exposure mitigation strategies in the context of climate change and an enhanced understanding of the mechanisms underlying the temperature variance of air pollution effect to help reduce the magnitude of the CKD burden on the healthcare systems.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Insuficiencia Renal Crónica , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , China/epidemiología , Femenino , Hospitales , Humanos , Masculino , Dióxido de Nitrógeno/análisis , Material Particulado/análisis , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/terapia , Temperatura , Factores de Tiempo
10.
Sensors (Basel) ; 22(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36146187

RESUMEN

The air-door is an important device for adjusting the air flow in a mine. It opens and closes within a short time owing to transportation and other factors. Although the switching sensor alone can identify the air-door opening and closing, it cannot relate it to abnormal fluctuations in the wind speed. Large fluctuations in the wind-velocity sensor data during this time can lead to false alarms. To overcome this problem, we propose a method for identifying air-door opening and closing using a single wind-velocity sensor. A multi-scale sliding window (MSSW) is employed to divide the samples. Then, the data global features and fluctuation features are extracted using statistics and the discrete wavelet transform (DWT). In addition, a machine learning model is adopted to classify each sample. Further, the identification results are selected by merging the classification results using the non-maximum suppression method. Finally, considering the safety accidents caused by the air-door opening and closing in an actual production mine, a large number of experiments were carried out to verify the effect of the algorithm using a simulated tunnel model. The results show that the proposed algorithm exhibits superior performance when the gradient boosting decision tree (GBDT) is selected for classification. In the data set composed of air-door opening and closing experimental data, the accuracy, precision, and recall rates of the air-door opening and closing identification are 91.89%, 93.07%, and 91.07%, respectively. In the data set composed of air-door opening and closing and other mine production activity experimental data, the accuracy, precision, and recall rates of the air-door opening and closing identification are 89.61%, 90.31%, and 88.39%, respectively.


Asunto(s)
Algoritmos , Viento , Aprendizaje Automático , Análisis de Ondículas
11.
Int J Mol Sci ; 23(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35628266

RESUMEN

Tangor, an important citrus type, is a hybrid of orange and mandarin and possesses their advantageous characteristics. Fruit quality is an important factor limiting the development of the citrus industry and highly depends on fruit development and ripening programs. However, fruit development and quality formation have not been completely explored in mandarin-orange hybrids. We sequenced the metabolome and transcriptome of three mandarin-orange hybrid cultivars at the early fruiting [90 days after full bloom (DAFB)], color change (180 DAFB), and ripening (270 DAFB) stages. Metabolome sequencing was performed to preliminarily identify the accumulation patterns of primary and secondary metabolites related to fruit quality and hormones regulating fruit development. Transcriptome analysis showed that many genes related to primary metabolism, secondary metabolism, cell wall metabolism, phytohormones, and transcriptional regulation were up-regulated in all three cultivars during fruit development and ripening. Additionally, multiple key genes were identified that may play a role in sucrose, citric acid and flavonoid accumulation, cell wall modification, and abscisic acid signaling, which may provide a valuable resource for future research on enhancement of fruit quality of hybrid citrus. Overall, this study provides new insights into the molecular basis of pulp growth and development regulation and fruit quality formation in mandarin-orange hybrids.


Asunto(s)
Citrus sinensis , Citrus , Citrus/genética , Citrus/metabolismo , Citrus sinensis/metabolismo , Frutas/metabolismo , Metaboloma , Transcriptoma
12.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361746

RESUMEN

Adequate yield and fruit quality are required in commercial plum production. The pollen source has been shown to influence fruit set and fruit characteristics. In this study, 'Siyueli', 'Fenghuangli' and 'Yinhongli' were used as pollinizers of 'Fengtangli' plum. Additionally, self-pollination, mixed pollination, and open pollination were performed. We characterized the differences in pollen tube growth, fruit set and fruit quality among pollination combinations. 'Fengtangli' flowers pollinated by 'Fenghuangli' had more pistils with pollen tubes penetrating the ovary and the highest fruit set rate, while the lowest fruit set rate was obtained from self-pollination. In self-pollinated flowers, 33% of pistils had at least one pollen tube reaching the ovary, implying that 'Fengtangli' is partially self-compatible. Pollen sources affected 'Fengtangli' fruit size, weight, pulp thickness, soluble solids, and sugar content. Transcriptome analysis of 'Siyueli'-pollinated and 'Yinhongli'-pollinated fruits revealed 2762 and 1018 differentially expressed genes (DEGs) involved in the response to different pollen sources. DEGs were enriched in plant hormone signal transduction, starch and sucrose metabolism, and MAPK signaling pathways. Our findings provide a reference for the selection of suitable pollinizers for 'Fengtangli' plum and promote future research on the metaxenia effect at the molecular level.


Asunto(s)
Prunus domestica , Prunus domestica/genética , Frutas , Transcriptoma , Polen/genética , Polinización , Flores , Perfilación de la Expresión Génica
13.
Biosci Biotechnol Biochem ; 84(6): 1131-1138, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32024440

RESUMEN

As a respiratory disease with high morbidity and mortality, pulmonary fibrosis (PF) has been a serious threat to people's health. Hederagenin (HDG) is a pentacyclic triterpenoid saponin widely distributed in various plants. This study explored the role of HDG in Bleomycin (BLM)-induced PF and the molecular mechanism. The results showed that HDG reduced BLM-induced pulmonary dysfunction, pathological damage in a dose-dependent manner. Besides, HDG reduced BLM-induced collagen deposition by decreasing the levels of α-SMA, Collagen I and hydroxproline. Furthermore, HDG reduced the levels of inflammatory cytokines (TNF-α and IL-6), TGF-ß1 and connective tissue growth factor (CTGF) in bronchoalveolar lavage fluid (BALF) or serum. Further mechanism analysis indicated that HDG inhibited the expression of Ras and phosphorylation of JNK and NFAT4 in a dose-dependent manner. However, the JNK pathway activator Anisomycin reversed this inhibitory effect. In conclusion, these findings suggest that HDG may be a potential target drug for PF therapy.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factores de Transcripción NFATC/metabolismo , Ácido Oleanólico/análogos & derivados , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Fibrosis Pulmonar/tratamiento farmacológico , Proteínas ras/metabolismo , Animales , Bleomicina/efectos adversos , Citocinas/sangre , Transición Epitelial-Mesenquimal/efectos de los fármacos , Masculino , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Fosforilación/efectos de los fármacos , Fibrosis Pulmonar/sangre , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Ratas , Ratas Sprague-Dawley
14.
Appl Opt ; 59(15): 4672-4684, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32543576

RESUMEN

In indoor multi-input-multi-output (MIMO) visible light communication (VLC) systems, spatial multiplexing (SMP) is employed to improve spectral efficiency. However, the performance of SMP in an indoor VLC system depends on a low channel correlation. In this paper, a receiver model with angular diversity detectors is considered. The objective is to reduce the channel correlation and hence the system performance in terms of bit error rate (BER) and channel capacity compared to vertically oriented detectors under no-line-of-sight (NLOS) channel conditions. For a vertical detector setup, the results show that the channel correlation cannot be further reduced by varying the transmitter separation, transmitter semi-angle, or field of view of the receiver in NLOS conditions due to the design of receiver separation being very small in small mobile devices. In comparison to vertical detector setups, by varying the detector axis of each photodetector (PD) detector axis in angular diversity detector setups, the channel matrix rank is improved under LOS conditions, and the channel correlation is effectively reduced under NLOS conditions without requiring any implementation complexity at the receiver. Therefore, it is found that the angular diversity detector setup can substantially improve the BER performance of SMP, since it makes each PD more spatially separated to improve channel conditions. Notably, we deduce the channel capacity expression to approximate the capacity of the indoor highly correlated MIMO channel and verify the theoretical analysis by numerical simulations. The results show that the angular diversity detector setup provides capacity improvement when compared with the vertical detector setup. Even though it diminishes the received power when the elevation angle exceeds the optimal elevation angle, it outweighs this degradation by providing reduced channel correlation.

15.
Plant Mol Biol ; 100(3): 265-283, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30989446

RESUMEN

KEY MESSAGE: Symbiotic nitrogen fixation in root nodules of grain legumes is essential for high yielding. Protein phosphorylation/dephosphorylation plays important role in root nodule development. Differences in the phosphoproteomes may either be developmental specific and related to nitrogen fixation activity. An iTRAQ-based quantitative phosphoproteomic analyses during nodule development enables identification of specific phosphorylation signaling in the Lotus-rhizobia symbiosis. During evolution, legumes (Fabaceae) have evolved a symbiotic relationship with rhizobia, which fix atmospheric nitrogen and produce ammonia that host plants can then absorb. Root nodule development depends on the activation of protein phosphorylation-mediated signal transduction cascades. To investigate possible molecular mechanisms of protein modulation during nodule development, we used iTRAQ-based quantitative proteomic analyses to identify root phosphoproteins during rhizobial colonization and infection of Lotus japonicus. 1154 phosphoproteins with 2957 high-confidence phosphorylation sites were identified. Gene ontology enrichment analysis of functional groups of these genes revealed that the biological processes mediated by these proteins included cellular processes, signal transduction, and transporter activity. Quantitative data highlighted the dynamics of protein phosphorylation during nodule development and, based on regulatory trends, seven groups were identified. RNA splicing and brassinosteroid (BR) signaling pathways were extensively affected by phosphorylation, and most Ser/Arg-rich (SR) proteins were multiply phosphorylated. In addition, many proposed kinase-substrate pairs were predicted, and in these MAPK6 substrates were found to be highly enriched. This study offers insights into the regulatory processes underlying nodule development, provides an accessible resource cataloging the phosphorylation status of thousands of Lotus proteins during nodule development, and develops our understanding of post-translational regulatory mechanisms in the Lotus-rhizobia symbiosis.


Asunto(s)
Fabaceae/metabolismo , Lotus/metabolismo , Proteínas de Plantas/metabolismo , Proteómica/métodos , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/metabolismo , Transducción de Señal , Simbiosis/fisiología , Amoníaco/metabolismo , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas , Lotus/genética , Espectrometría de Masas , Proteína Quinasa 6 Activada por Mitógenos/genética , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Fijación del Nitrógeno , Fosfoproteínas/fisiología , Fosforilación , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Empalme del ARN , ARN de Planta/metabolismo , Rhizobium/genética , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Factores de Transcripción
16.
Phys Chem Chem Phys ; 21(30): 16804-16817, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31332402

RESUMEN

We present an improved Dreiding force field for single layer black phosphorus (SLBP) obtained by first-principle calculations in conjunction with the particle swarm optimization algorithm and molecular dynamics (MD) simulations. The proposed Dreiding force field can describe material properties of the SLBP very well in comparison with first-principle calculations and the Stillinger-Weber potential, including Young's modulus, Poisson's ratio, shear modulus, bending stiffness and phonon spectrum. Through the improved Dreiding force field, the wetting of a water nanodroplet and the adsorption of a villin headpiece on SLBP under compressive deformation are also studied by MD simulations. The simulation results show that the microscopic contact angle increases with the level of compressive strain on the SLBP. Meanwhile, the compressive strain reduces disruption caused by SLBP to the structure of the villin headpiece. The proposed Dreiding force field shows great potential to describe the interaction between SLBP and water molecules. It can be further used to simulate the transport of water on SLBP, especially under mechanical deformation, and interactions between SLBP and biological systems.

17.
Analyst ; 143(21): 5210-5217, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30270376

RESUMEN

A convenient and high-performance AuNPs@aptamer-modified mercaptosiloxane-based hybrid affinity monolithic column with an unusually high coverage density of aptamers was facilely prepared and used for on-column selective recognition of ochratoxin A (OTA). Due to the high surface-to-volume ratio of AuNPs, the robust conjugation of Au-SH and large specific surface area of hybrid-silica monolith, high coverage density of 5'-SH-aptamers up to 3494 pmol µL-1 was achieved, which was 2.5-10 folds higher than that of other previously reported affinity monoliths modified with AuNPs@Apt. Using OTA as the model analyte, the highly selective recognition of OTA was carried out via online coupling with HPLC, and the cross-reactivity towards analogues, such as OTB and aflatoxin B1, was weak. High recovery yields of OTA were achieved at more than 92% (n = 3) even when OTB was added at a high concentration level up to 50 ng mL-1. For sample analysis, efficient discrimination of OTA was successfully obtained with a sensitive detection limit of 25 pg mL-1. The recoveries of OTA with different fortified levels were achieved at 88.6%-94.1% and 88.2%-94.3% for beer and wine samples, respectively. This protocol provides a facile approach for fabricating a desirable affinity monolith modified with abundant aptamers for highly selective and sensitive on-column extraction of target analyte OTA.


Asunto(s)
Aptámeros de Nucleótidos/química , Oro/química , Nanopartículas del Metal/química , Ocratoxinas/análisis , Siloxanos/química , Extracción en Fase Sólida/métodos , Cerveza/análisis , Límite de Detección , Extracción en Fase Sólida/instrumentación , Compuestos de Sulfhidrilo/química , Vino/análisis
18.
Mikrochim Acta ; 185(7): 318, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29876757

RESUMEN

An ionic liquid hybrid monolithic capillary column was prepared within 7 min via photoinitiated free-radical polymerization of an ionic liquid monomer (1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide); VBIMNTF2) and a methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) acting as a cross-linker. The effects of composition of prepolymerization solution and initiation time on the porous structure and electroosmotic flow (EOF) of monolithic column were investigated. The hybrid monolith was characterized by scanning electron microscopy and FTIR. Owing to the introduction of a rigid nanosized POSS silica core and ionic liquids with multiple interaction sites, the monolithic column has a well-defined 3D skeleton morphology, good mechanical stability, and a stable anodic electroosmotic flow. The hybrid monolithic stationary phase was applied to the capillary electrochromatographic separation of various alkylbenzenes, phenols, anilines and polycyclic aromatic hydrocarbons (PAHs). The column efficiency is highest (98,000 plates/m) in case of alkylbenzenes. Mixed-mode retention mechanisms including hydrophobic interactions, π-π stacking, electrostatic interaction and electrophoretic mobility can be observed. This indicates the potential of this material in terms of efficient separation of analytes of different structural type. Graphical Abstract Preparation of a mixed-mode ionic liquid hybrid monolithic column via photoinitiated polymerization of methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) and 1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide (VBIMNTF2) ionic liquid for use in capillary electrochromatography.

19.
J Ultrasound Med ; 34(5): 759-66, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25911707

RESUMEN

OBJECTIVES: The purpose of this study was to evaluate the role of bidirectional arterial flow combined with ultrasound elastography for differentiation of American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) category 4 masses. METHODS: A total of 116 BI-RADS category 4 breast masses were evaluated with color Doppler sonography, spectral analysis, and elastography. The sensitivity, specificity, accuracy, positive and negative predictive values, and receiver operator characteristic curve were used to estimate the diagnostic performance for each modality and the combination method. RESULTS: The combination method had the best sensitivity (81.1%) but less specificity (94.9%) and the best accuracy (90.5%). The discriminating power of the combined method (area under the curve [AUC], 0.880; 95% confidence interval [CI], 80.0%-96.0%) was significantly higher than that of bidirectional arterial flow (AUC, 0.818; 95% CI, 72.0%-91.6%; P< .01) and elastography (AUC, 0.765; 95% CI, 65.9%-87.0%; P< .01). CONCLUSIONS: Bidirectional arterial flow evaluation, when combined with elastography, could potentially improve diagnostic accuracy for BI-RADS category 4 breast masses.


Asunto(s)
Velocidad del Flujo Sanguíneo , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/fisiopatología , Diagnóstico por Imagen de Elasticidad/métodos , Imagen Multimodal/métodos , Ultrasonografía Doppler/métodos , Adolescente , Adulto , Neoplasias de la Mama/clasificación , Niño , Femenino , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
20.
Food Chem ; 439: 138142, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38081096

RESUMEN

Spices have long been popular worldwide. Besides serving as aromatic and flavorful food and cooking ingredients, many spices exhibit notable bioactivity. Quality evaluation methods are essential for ensuring the quality and flavor of spices. However, existing methods typically focus on the content of particular components or certain aspects of bioactivity. For a systematic evaluation of spice quality, we herein propose a comprehensive "quality-quantity-activity" approach based on portable near-infrared spectrometer and membership function analysis. Cinnamomum cassia was used as a representative example to illustrate this approach. Near-infrared spectroscopy and chemometric methods were combined to predict the geographical origin, cinnamaldehyde content, ash content, antioxidant activity, and integrated membership function value. All the optimal prediction models displayed good predictive ability (correlation coefficient of prediction > 0.9, residual predictive deviation > 2.1). The proposed approach can provide a valuable reference for the rapid and comprehensive quality evaluation of spices.


Asunto(s)
Cinnamomum aromaticum , Cinnamomum aromaticum/química , Especias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA