Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Biochem Biophys ; 47(2): 178-86, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17652770

RESUMEN

The calcium channel gamma subunits comprise an eight-member protein family that share a common topology consisting of four transmembrane domains and intracellular N- and C-termini. Although the first gamma subunit was identified as an auxiliary subunit of a voltage-dependent calcium channel, a review of phylogenetic, bioinformatic, and functional studies indicates that they are a functionally diverse protein family. A cluster containing gamma1 and gamma6 conforms to the original description of the protein family as they seem to act primarily as subunits of calcium channels expressed in muscle. Members of a second cluster (gamma2, gamma3, gamma4, gamma8) function as regulators of AMPA receptor localization and function in the brain and are collectively known as TARPs. The function of members of the third cluster (gamma5, gamma7) remains unclear. Our analysis shows that the members of each cluster contain conserved regulatory motifs that help to differentiate the groups. However, the physiological significance of these motifs in many cases remains to be demonstrated.


Asunto(s)
Canales de Calcio/química , Secuencias de Aminoácidos , Animales , Canales de Calcio Tipo L/química , Canales de Calcio Tipo N/química , Adhesión Celular , Membrana Celular/metabolismo , Biología Computacional/métodos , Bases de Datos de Proteínas , Electrofisiología , Humanos , Modelos Biológicos , Filogenia , Estructura Terciaria de Proteína , Receptores AMPA/química
2.
PLoS One ; 9(2): e88870, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586421

RESUMEN

Protein interactions underlie the complexity of neuronal function. Potential interactions between specific proteins in the brain are predicted from assays based on genetic interaction and/or biochemistry. Genetic interaction reveals endogenous, but not necessarily direct, interactions between the proteins. Biochemistry-based assays, on the other hand, demonstrate direct interactions between proteins, but often outside their native environment or without a subcellular context. We aimed to achieve the best of both approaches by visualizing protein interaction directly within the brain of a live animal. Here, we show a proof-of-principle experiment in which the Cdc42 GTPase associates with its alleged partner WASp within neurons during the time and space that coincide with the newly developing CNS.


Asunto(s)
Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Simulación de Dinámica Molecular , Imagen Molecular/métodos , Proteína de Unión al GTP cdc42/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero , Transferencia Resonante de Energía de Fluorescencia/métodos , Imagen Molecular/instrumentación , Neuronas/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , Transducción de Señal/fisiología , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP cdc42/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA