Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oecologia ; 197(4): 1017-1026, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33416961

RESUMEN

Drought, defined as a marked deficiency of precipitation relative to normal, occurs as periods of below-average precipitation or complete failure of precipitation inputs, and can be limited to a single season or prolonged over multiple years. Grasslands are typically quite sensitive to drought, but there can be substantial variability in the magnitude of loss of ecosystem function. We hypothesized that differences in how drought occurs may contribute to this variability. In four native Great Plains grasslands (three C4- and one C3-dominated) spanning a ~ 500-mm precipitation gradient, we imposed drought for four consecutive years by (1) reducing each rainfall event by 66% during the growing season (chronic drought) or (2) completely excluding rainfall during a shorter portion of the growing season (intense drought). The drought treatments were similar in magnitude but differed in the following characteristics: event number, event size and length of dry periods. We observed consistent drought-induced reductions (28-37%) in aboveground net primary production (ANPP) only in the C4-dominated grasslands. In general, intense drought reduced ANPP more than chronic drought, with little evidence that drought duration altered this pattern. Conversely, belowground net primary production (BNPP) was reduced by drought in all grasslands (32-64%), with BNPP reductions greater in intense vs. chronic drought treatments in the most mesic grassland. We conclude that grassland productivity responses to drought did not strongly differ between these two types of drought, but when differences existed, intense drought consistently reduced function more than chronic drought.


Asunto(s)
Sequías , Pradera , Ecosistema , Poaceae , Lluvia
2.
Oecologia ; 177(4): 949-57, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25651805

RESUMEN

Terrestrial ecosystems often vary dramatically in their responses to drought, but the reasons for this are unclear. With climate change forecasts for more frequent and extensive drought in the future, a more complete understanding of the mechanisms that determine differential ecosystem sensitivity to drought is needed. In 2012, the Central US experienced the fourth largest drought in a century, with a regional-scale 40% reduction in growing season precipitation affecting ecosystems ranging from desert grassland to mesic tallgrass prairie. This provided an opportunity to assess ecosystem sensitivity to a drought of common magnitude in six native grasslands. We tested the prediction that drought sensitivity is inversely related to mean annual precipitation (MAP) by quantifying reductions in aboveground net primary production (ANPP). Long-term ANPP data available for each site (mean length = 16 years) were used as a baseline for calculating reductions in ANPP, and drought sensitivity was estimated as the reduction in ANPP per millimeter reduction in precipitation. Arid grasslands were the most sensitive to drought, but drought responses and sensitivity varied by more than twofold among the six grasslands, despite all sites experiencing 40% reductions in growing season precipitation. Although drought sensitivity generally decreased with increasing MAP as predicted, there was evidence that the identity and traits of the dominant species, as well as plant functional diversity, influenced sensitivity. A more comprehensive understanding of the mechanisms leading to differences in drought sensitivity will require multi-site manipulative experiments designed to assess both biotic and abiotic determinants of ecosystem sensitivity.


Asunto(s)
Adaptación Fisiológica , Biomasa , Cambio Climático , Sequías , Pradera , Plantas , Estrés Fisiológico , Poaceae , Lluvia , Estaciones del Año , Estados Unidos
3.
Ecology ; 104(5): e4036, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36944538

RESUMEN

Climate change models often assume similar responses to temperatures across the range of a species, but local adaptation or phenotypic plasticity can lead plants and animals to respond differently to temperature in different parts of their range. To date, there have been few tests of this assumption at the scale of continents, so it is unclear if this is a large-scale problem. Here, we examined the assumption that insect taxa show similar responses to temperature at 96 sites in grassy habitats across North America. We sampled insects with Malaise traps during 2019-2021 (N = 1041 samples) and examined the biomass of insects in relation to temperature and time of season. Our samples mostly contained Diptera (33%), Lepidoptera (19%), Hymenoptera (18%), and Coleoptera (10%). We found strong regional differences in the phenology of insects and their response to temperature, even within the same taxonomic group, habitat type, and time of season. For example, the biomass of nematoceran flies increased across the season in the central part of the continent, but it only showed a small increase in the Northeast and a seasonal decline in the Southeast and West. At a smaller scale, insect biomass at different traps operating on the same days was correlated up to ~75 km apart. Large-scale geographic and phenological variation in insect biomass and abundance has not been studied well, and it is a major source of controversy in previous analyses of insect declines that have aggregated studies from different locations and time periods. Our study illustrates that large-scale predictions about changes in insect populations, and their causes, will need to incorporate regional and taxonomic differences in the response to temperature.


Asunto(s)
Insectos , Lepidópteros , Animales , Temperatura , Insectos/fisiología , Ecosistema , Aclimatación
4.
AoB Plants ; 13(4): plab047, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34457229

RESUMEN

Restoration of dryland ecosystems is often limited by low seedling establishment and survival. Defoliation caused by insects and small mammals could be an overlooked cause of seedling mortality. In the sagebrush steppe, we examined the effect of seedling defoliation on the survival of perennial grasses commonly used as restoration materials. Under field conditions, seedlings of three perennial bunchgrass species (non-native Agropyron cristatum, and native grasses Poa secunda and Pseudoroegneria spicata) were defoliated at two intensities (30 % and 70 % leaf length removal) and frequencies (one or two clippings) and compared to a non-defoliated control. Following emergence the first year, clippings occurred at the two-leaf stage; a second clipping occurred 1 month later for repeated defoliation treatments. We monitored seedling survival and tillering for 2 years. We expected higher defoliation intensity and frequency to reduce survival for all species, but only a few treatments reduced Po. secunda survival. Conversely, larger-statured Triticeae (wheatgrasses) benefited from some defoliation treatments. In both years, A. cristatum survival increased with repeated defoliation at both intensities. Defoliation did not affect Ps. spicata survival in the first year, but a single defoliation in the second year resulted in increased survival. In both A. cristatum and Ps. spicata, higher-intensity defoliation reduced the boost to survival resulting from defoliation frequency. Seedlings with more tillers had greater survival probabilities, but tiller number was unaffected by defoliation. Further research may elucidate mechanisms seedlings use to compensate for or benefit from defoliation. In the meantime, managers should aim to select defoliation-tolerant species if they anticipate herbivory will be problematic for restoration sites.

5.
Conserv Physiol ; 7(1): coz112, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31949896

RESUMEN

Native sagebrush-steppe bunchgrass populations are threatened by the spread and dominance of exotic invasive annual grasses, in part due to low, episodic seed production. In contrast, the widespread exotic bunchgrass, crested wheatgrass, readily produces viable seed cohorts. The mechanisms underlying these differences are unclear. To address this, we measured seed head specific mass (g m-2) and net photosynthetic assimilation (A net) as a function of internal [CO2] (A/Ci curves) in pre- and post-anthesis seed heads and flag leaves of crested wheatgrass and four native bunchgrasses to determine if differences in allocation and photosynthetic characteristics of seed heads was consistent with differential reproductive success. Crested wheatgrass seed heads had 2-fold greater specific mass compared to the native grasses, concurrent with greater CO2-saturated photosynthesis (A max), mesophyll carboxylation efficiency (CE), and higher intrinsic water-use efficiency (WUE i ; A net/stomatal conductance (g s)), but with similar relative stomatal limitations to photosynthesis (RSL). Post-anthesis seed head A max, CE, RSL and g s decreased in native grasses, while crested wheatgrass RSL decreased and CE increased dramatically, likely due to tighter coordination between seed head structural changes with stomatal and biochemical dynamics. Our results suggest native sagebrush-steppe bunchgrasses have greater stomatal and structural constraints to reproductive photosynthesis, while the exotic grass has evolved seed heads functionally similar to leaves. This study shows elucidating reproduction-related ecophysiological mechanisms provide understanding of plant attributes that underlie restoration success and could help guide the development of native plant materials with functional attributes needed to overcome demographic bottlenecks that limit their restoration into degraded sagebrush-steppe.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA