Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Materials (Basel) ; 16(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614754

RESUMEN

Impurities can be incorporated during thin film deposition, but also can originate from atmosphere exposure. As impurities can strongly affect the composition-structure-property relations in magnetron sputter deposited thin films, it is important to distinguish between both incorporation channels. Therefore, the impurity incorporation by atmosphere exposure into sputtered Mg, Al, and Ca thin films is systematically studied by a variation of the deposition temperatures and atmosphere exposure times. Deposition temperature variation results in morphological modifications explained by considering surface and bulk diffusion as well as grain boundary motion and evaporation. The film morphologies exhibiting the lowest oxygen concentrations, as measured by energy dispersive X-ray spectroscopy, are obtained at a homologous temperature of 0.4 for both Mg and Al thin films. For Ca, preventing atmosphere exposure is essential to hinder impurity incorporation: By comparing the impurity concentration in Al-capped and uncapped thin films, it is demonstrated that Ca thin films are locally protected by Al-capping, while Mg (and Al) form native passivation layers. Furthermore, it can be learned that the capping (or self-passivation) efficiency in terms of hindering further oxidation of the films in atmosphere is strongly dependent on the underlying morphology, which in turn is defined by the growth temperature.

2.
Adv Healthc Mater ; 12(8): e2201726, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36468909

RESUMEN

This is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d. The biodegradation of scaffolds leads to the depolymerization of the amorphous phase, resulting in an increase in the degree of crystallinity. Because of more regular dipole order in the crystalline phase, surface potential of all fibers increases after the biodegradation, with a maximum (361 ± 5 mV) after the addition of 1 wt% rGO into PHB as compared to pristine PHB fibers. By contrast, PHB-0.7rGO fibers manifest the strongest effective vertical (0.59 ± 0.03 pm V-1 ) and lateral (1.06 ± 0.02 pm V-1 ) piezoresponse owing to a greater presence of electroactive ß-phase. In vitro assays involving primary human fibroblasts reveal equal biocompatibility and faster cell proliferation on PHB-0.7rGO scaffolds compared to pure PHB and nonpiezoelectric polycaprolactone scaffolds. Thus, the developed biodegradable PHB-rGO scaffolds with enhanced piezoresponse are promising for tissue-engineering applications.


Asunto(s)
Hidroxibutiratos , Andamios del Tejido , Humanos , Andamios del Tejido/química , Ácido 3-Hidroxibutírico , Hidroxibutiratos/química , Ingeniería de Tejidos/métodos , Poliésteres/química
3.
Inorg Chem ; 51(21): 11623-34, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23078525

RESUMEN

Rare-earth coordination polymers or lanthanide-organic frameworks with hitherto unreported crystal structures have been obtained on the basis of the "light" lanthanides Pr, Nd, Sm, and Eu in combination with terephthalic acid and using a slightly altered literature synthesis procedure. Rietveld refinement has shown that powder XRD patterns of such compounds are largely dominated by the positions of the heavy elements, pointing to isostructural networks for all four terephthalate-based materials. An in-depth luminescence study has been performed on the reported MOFs, showing rare praseodymium and samarium emission in the visible spectrum, aside from the strong europium luminescence and the near-infrared emission from both a terephthalate and 2,5-pyridinedicarboxylate based neodymium-MOF.

4.
Phys Chem Chem Phys ; 14(44): 15562-70, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23073025

RESUMEN

An amino functionalized vanadium-containing Metal Organic Framework, NH(2)-MIL-47, has been synthesized by a hydrothermal reaction in an autoclave. Alternatively, a synthesis route via microwave enhanced irradiation has been optimized to accelerate the synthesis. The NH(2)-MIL-47 exhibits the same topology as MIL-47, in which the V center is octahedrally coordinated. After an exchange procedure in DMF the V(+III) center is oxidized to V(+IV), which is confirmed by EPR and XPS measurements. The CO(2) and CH(4) adsorption properties have been evaluated and compared to MIL-47, showing that both MOFs have an almost similar adsorption capacity and affinity for CO(2). DFT-based molecular modeling calculations were performed to obtain more insight into the adsorption positions for CO(2) in NH(2)-MIL-47. Furthermore our calculated adsorption enthalpies agree well with the experimental values.

5.
Phys Chem Chem Phys ; 13(13): 5587-9, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21359287

RESUMEN

The water-stable metal-organic framework MIL-53(Cr) is able to adsorb phenol and p-cresol from contaminated water as well as the monomeric sugar D-(-)-fructose. Based on the isotherm for phenol uptake from the liquid phase, it is proposed that the framework breathes to maximize the uptake.

6.
Materials (Basel) ; 14(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885376

RESUMEN

CuO and Al thin films were successively deposited using direct current (reactive) magnetron sputter deposition. A multilayer of five bilayers was deposited on glass, which can be ignited by heating a Ti resistive thin film. The velocity of the reaction front which propagates along the multilayer was optically determined using a high-speed camera. During the deposition of the aluminum layers, air was intentionally leaked into the vacuum chamber to introduce impurities in the film. Depositions at different impurity/metal flux ratios were performed. The front velocity reaches a value of approximately 20 m/s at low flux ratios but drops to approximately 7 m/s at flux ratios between 0.6 and 1. The drop is rather abrupt as the front velocity stays constant above flux ratios larger than 1. This behavior is explained based on the hindrance of the oxygen transport from the oxidizer (CuO) to the fuel (Al).

7.
ChemSusChem ; 8(2): 345-52, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25470619

RESUMEN

The oxidative decarboxylation of amino acids to nitriles was achieved in aqueous solution by in situ halide oxidation using catalytic amounts of tungstate exchanged on a [Ni,Al] layered double hydroxide (LDH), NH4 Br, and H2 O2 as the terminal oxidant. Both halide oxidation and oxidative decarboxylation were facilitated by proximity effects between the reactants and the LDH catalyst. A wide range of amino acids was converted with high yields, often >90 %. The nitrile selectivity was excellent, and the system is compatible with amide, alcohol, and in particular carboxylic acid, amine, and guanidine functional groups after appropriate neutralization. This heterogeneous catalytic system was applied successfully to convert a protein-rich byproduct from the starch industry into useful bio-based N-containing chemicals.


Asunto(s)
Aminoácidos/química , Nitrilos/química , Catálisis , Descarboxilación , Glútenes/química , Hidrólisis , Oxidación-Reducción , Triticum/química
8.
Chemphyschem ; 8(3): 370-9, 2007 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-17226875

RESUMEN

This study presents a methodology for an in-depth characterization of six representative commercial nanofiltration membranes. Laboratory-made polyethersulfone membranes are included for reference. Besides the physical characterization [molecular weight cut-off (MWCO), surface charge, roughness and hydrophobicity], the membranes are also studied for their chemical composition [attenuated total reflectance Fourier spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS)] and porosity [positron annihilation spectroscopy (PAS)]. The chemical characterization indicates that all membranes are composed of at least two different layers. The presence of an additional third layer is proved and studied for membranes with a polyamide top layer. PAS experiments, in combination with FIB (focused ion beam) images, show that these membranes also have a thinner and a less porous skin layer (upper part of the top layer). In the skin layer, two different pore sizes are observed for all commercial membranes: a pore size of 1.25-1.55 angstroms as well as a pore size of 3.20-3.95 angstroms (both depending on the membrane type). Thus, the pore size distribution in nanofiltration membranes is bimodal, in contrast to the generally accepted log-normal distribution. Although the pore sizes are rather similar for all commercial membranes, their pore volume fraction and hence their porosity differ significantly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA