Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 159(5): 1168-1187, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25416953

RESUMEN

The fungal meningitis pathogen Cryptococcus neoformans is a central driver of mortality in HIV/AIDS. We report a genome-scale chemical genetic data map for this pathogen that quantifies the impact of 439 small-molecule challenges on 1,448 gene knockouts. We identified chemical phenotypes for 83% of mutants screened and at least one genetic response for each compound. C. neoformans chemical-genetic responses are largely distinct from orthologous published profiles of Saccharomyces cerevisiae, demonstrating the importance of pathogen-centered studies. We used the chemical-genetic matrix to predict novel pathogenicity genes, infer compound mode of action, and to develop an algorithm, O2M, that predicts antifungal synergies. These predictions were experimentally validated, thereby identifying virulence genes, a molecule that triggers G2/M arrest and inhibits the Cdc25 phosphatase, and many compounds that synergize with the antifungal drug fluconazole. Our work establishes a chemical-genetic foundation for approaching an infection responsible for greater than one-third of AIDS-related deaths.


Asunto(s)
Antifúngicos/farmacología , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/genética , Infecciones Oportunistas Relacionadas con el SIDA/microbiología , Algoritmos , Animales , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/patogenicidad , Descubrimiento de Drogas , Técnicas de Inactivación de Genes , Pruebas de Sensibilidad Microbiana , Saccharomyces cerevisiae/genética , Factores de Virulencia/genética
2.
Nat Chem Biol ; 13(9): 982-993, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28759014

RESUMEN

Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.


Asunto(s)
Sistemas de Liberación de Medicamentos , Bibliotecas de Moléculas Pequeñas , Evaluación Preclínica de Medicamentos , Perfilación de la Expresión Génica , Estructura Molecular
5.
PLoS Comput Biol ; 14(10): e1006532, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30376562

RESUMEN

Chemical-genetic interactions-observed when the treatment of mutant cells with chemical compounds reveals unexpected phenotypes-contain rich functional information linking compounds to their cellular modes of action. To systematically identify these interactions, an array of mutants is challenged with a compound and monitored for fitness defects, generating a chemical-genetic interaction profile that provides a quantitative, unbiased description of the cellular function(s) perturbed by the compound. Genetic interactions, obtained from genome-wide double-mutant screens, provide a key for interpreting the functional information contained in chemical-genetic interaction profiles. Despite the utility of this approach, integrative analyses of genetic and chemical-genetic interaction networks have not been systematically evaluated. We developed a method, called CG-TARGET (Chemical Genetic Translation via A Reference Genetic nETwork), that integrates large-scale chemical-genetic interaction screening data with a genetic interaction network to predict the biological processes perturbed by compounds. In a recent publication, we applied CG-TARGET to a screen of nearly 14,000 chemical compounds in Saccharomyces cerevisiae, integrating this dataset with the global S. cerevisiae genetic interaction network to prioritize over 1500 compounds with high-confidence biological process predictions for further study. We present here a formal description and rigorous benchmarking of the CG-TARGET method, showing that, compared to alternative enrichment-based approaches, it achieves similar or better accuracy while substantially improving the ability to control the false discovery rate of biological process predictions. Additional investigation of the compatibility of chemical-genetic and genetic interaction profiles revealed that one-third of observed chemical-genetic interactions contributed to the highest-confidence biological process predictions and that negative chemical-genetic interactions overwhelmingly formed the basis of these predictions. We also present experimental validations of CG-TARGET-predicted tubulin polymerization and cell cycle progression inhibitors. Our approach successfully demonstrates the use of genetic interaction networks in the high-throughput functional annotation of compounds to biological processes.


Asunto(s)
Ciclo Celular , Descubrimiento de Drogas/métodos , Redes Reguladoras de Genes , Bibliotecas de Moléculas Pequeñas , Biología de Sistemas/métodos , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Colchicina/farmacología , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Multimerización de Proteína/efectos de los fármacos , Reproducibilidad de los Resultados , Tubulina (Proteína)/efectos de los fármacos , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacología , Levaduras/efectos de los fármacos , Levaduras/genética , Levaduras/fisiología
6.
Proc Natl Acad Sci U S A ; 112(12): E1490-7, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25775513

RESUMEN

A rise in resistance to current antifungals necessitates strategies to identify alternative sources of effective fungicides. We report the discovery of poacic acid, a potent antifungal compound found in lignocellulosic hydrolysates of grasses. Chemical genomics using Saccharomyces cerevisiae showed that loss of cell wall synthesis and maintenance genes conferred increased sensitivity to poacic acid. Morphological analysis revealed that cells treated with poacic acid behaved similarly to cells treated with other cell wall-targeting drugs and mutants with deletions in genes involved in processes related to cell wall biogenesis. Poacic acid causes rapid cell lysis and is synergistic with caspofungin and fluconazole. The cellular target was identified; poacic acid localized to the cell wall and inhibited ß-1,3-glucan synthesis in vivo and in vitro, apparently by directly binding ß-1,3-glucan. Through its activity on the glucan layer, poacic acid inhibits growth of the fungi Sclerotinia sclerotiorum and Alternaria solani as well as the oomycete Phytophthora sojae. A single application of poacic acid to leaves infected with the broad-range fungal pathogen S. sclerotiorum substantially reduced lesion development. The discovery of poacic acid as a natural antifungal agent targeting ß-1,3-glucan highlights the potential side use of products generated in the processing of renewable biomass toward biofuels as a source of valuable bioactive compounds and further clarifies the nature and mechanism of fermentation inhibitors found in lignocellulosic hydrolysates.


Asunto(s)
Ácidos Cumáricos/química , Fungicidas Industriales/química , Poaceae/química , Saccharomyces cerevisiae/efectos de los fármacos , Estilbenos/química , beta-Glucanos/química , Caspofungina , Membrana Celular/metabolismo , Pared Celular/metabolismo , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Equinocandinas/química , Genómica , Hidrólisis , Concentración 50 Inhibidora , Lignina/química , Lipopéptidos , Extractos Vegetales/química , Saccharomyces cerevisiae/metabolismo
7.
Angew Chem Int Ed Engl ; 53(43): 11583-6, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25197007

RESUMEN

Forazoline A, a novel antifungal polyketide with in vivo efficacy against Candida albicans, was discovered using LCMS-based metabolomics to investigate marine-invertebrate-associated bacteria. Forazoline A had a highly unusual and unprecedented skeleton. Acquisition of (13)C-(13)C gCOSY and (13)C-(15)N HMQC NMR data provided the direct carbon-carbon and carbon-nitrogen connectivity, respectively. This approach represents the first example of determining direct (13)C-(15)N connectivity for a natural product. Using yeast chemical genomics, we propose that forazoline A operated through a new mechanism of action with a phenotypic outcome of disrupting membrane integrity.


Asunto(s)
Antifúngicos/farmacología , Bacterias/química , Policétidos/farmacología , Animales , Antifúngicos/aislamiento & purificación , Candida albicans/efectos de los fármacos , Espectroscopía de Resonancia Magnética con Carbono-13 , Espectroscopía de Resonancia Magnética , Biología Marina , Espectrometría de Masas , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Policétidos/aislamiento & purificación
8.
PLoS Comput Biol ; 6(12): e1001028, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21170309

RESUMEN

Overlaying differential changes in gene expression on protein interaction networks has proven to be a useful approach to interpreting the cell's dynamic response to a changing environment. Despite successes in finding active subnetworks in the context of a single species, the idea of overlaying lists of differentially expressed genes on networks has not yet been extended to support the analysis of multiple species' interaction networks. To address this problem, we designed a scalable, cross-species network search algorithm, neXus (Network-cross(X)-species-Search), that discovers conserved, active subnetworks based on parallel differential expression studies in multiple species. Our approach leverages functional linkage networks, which provide more comprehensive coverage of functional relationships than physical interaction networks by combining heterogeneous types of genomic data. We applied our cross-species approach to identify conserved modules that are differentially active in stem cells relative to differentiated cells based on parallel gene expression studies and functional linkage networks from mouse and human. We find hundreds of conserved active subnetworks enriched for stem cell-associated functions such as cell cycle, DNA repair, and chromatin modification processes. Using a variation of this approach, we also find a number of species-specific networks, which likely reflect mechanisms of stem cell function that have diverged between mouse and human. We assess the statistical significance of the subnetworks by comparing them with subnetworks discovered on random permutations of the differential expression data. We also describe several case examples that illustrate the utility of comparative analysis of active subnetworks.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/genética , Mapeo de Interacción de Proteínas/métodos , Transducción de Señal/genética , Algoritmos , Animales , Bases de Datos Genéticas , Humanos , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los Resultados , Especificidad de la Especie , Células Madre
9.
Front Immunol ; 12: 691758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335598

RESUMEN

Influenza is a serious global health threat that shows varying pathogenicity among different virus strains. Understanding similarities and differences among activated functional pathways in the host responses can help elucidate therapeutic targets responsible for pathogenesis. To compare the types and timing of functional modules activated in host cells by four influenza viruses of varying pathogenicity, we developed a new DYNAmic MOdule (DYNAMO) method that addresses the need to compare functional module utilization over time. This integrative approach overlays whole genome time series expression data onto an immune-specific functional network, and extracts conserved modules exhibiting either different temporal patterns or overall transcriptional activity. We identified a common core response to influenza virus infection that is temporally shifted for different viruses. We also identified differentially regulated functional modules that reveal unique elements of responses to different virus strains. Our work highlights the usefulness of combining time series gene expression data with a functional interaction map to capture temporal dynamics of the same cellular pathways under different conditions. Our results help elucidate conservation of the immune response both globally and at a granular level, and provide mechanistic insight into the differences in the host response to infection by influenza strains of varying pathogenicity.


Asunto(s)
Algoritmos , Interacciones Huésped-Patógeno/inmunología , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana/inmunología , Presentación de Antígeno , Células Dendríticas/inmunología , Interacciones Huésped-Patógeno/genética , Humanos , Gripe Humana/epidemiología , Gripe Humana/genética , Pandemias , Transcriptoma
10.
Nat Protoc ; 14(2): 415-440, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30635653

RESUMEN

The construction of genome-wide mutant collections has enabled high-throughput, high-dimensional quantitative characterization of gene and chemical function, particularly via genetic and chemical-genetic interaction experiments. As the throughput of such experiments increases with improvements in sequencing technology and sample multiplexing, appropriate tools must be developed to handle the large volume of data produced. Here, we describe how to apply our approach to high-throughput, fitness-based profiling of pooled mutant yeast collections using the BEAN-counter software pipeline (Barcoded Experiment Analysis for Next-generation sequencing) for analysis. The software has also successfully processed data from Schizosaccharomyces pombe, Escherichia coli, and Zymomonas mobilis mutant collections. We provide general recommendations for the design of large-scale, multiplexed barcode sequencing experiments. The procedure outlined here was used to score interactions for ~4 million chemical-by-mutant combinations in our recently published chemical-genetic interaction screen of nearly 14,000 chemical compounds across seven diverse compound collections. Here we selected a representative subset of these data on which to demonstrate our analysis pipeline. BEAN-counter is open source, written in Python, and freely available for academic use. Users should be proficient at the command line; advanced users who wish to analyze larger datasets with hundreds or more conditions should also be familiar with concepts in analysis of high-throughput biological data. BEAN-counter encapsulates the knowledge we have accumulated from, and successfully applied to, our multiplexed, pooled barcode sequencing experiments. This protocol will be useful to those interested in generating their own high-dimensional, quantitative characterizations of gene or chemical function in a high-throughput manner.


Asunto(s)
Interacción Gen-Ambiente , Genoma Bacteriano , Genoma Fúngico , Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Programas Informáticos , Código de Barras del ADN Taxonómico/métodos , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Escherichia coli/clasificación , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/clasificación , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Zymomonas/clasificación , Zymomonas/efectos de los fármacos , Zymomonas/genética , Zymomonas/metabolismo
11.
Science ; 360(6386)2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29674565

RESUMEN

To systematically explore complex genetic interactions, we constructed ~200,000 yeast triple mutants and scored negative trigenic interactions. We selected double-mutant query genes across a broad spectrum of biological processes, spanning a range of quantitative features of the global digenic interaction network and tested for a genetic interaction with a third mutation. Trigenic interactions often occurred among functionally related genes, and essential genes were hubs on the trigenic network. Despite their functional enrichment, trigenic interactions tended to link genes in distant bioprocesses and displayed a weaker magnitude than digenic interactions. We estimate that the global trigenic interaction network is ~100 times as large as the global digenic network, highlighting the potential for complex genetic interactions to affect the biology of inheritance, including the genotype-to-phenotype relationship.


Asunto(s)
Redes Reguladoras de Genes , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos
12.
Science ; 353(6306)2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27708008

RESUMEN

We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell.


Asunto(s)
Redes Reguladoras de Genes , Genes Fúngicos/fisiología , Pleiotropía Genética/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Epistasis Genética , Genes Esenciales
13.
Methods Mol Biol ; 1263: 299-318, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25618354

RESUMEN

Chemical genomics is an unbiased, whole-cell approach to characterizing novel compounds to determine mode of action and cellular target. Our version of this technique is built upon barcoded deletion mutants of Saccharomyces cerevisiae and has been adapted to a high-throughput methodology using next-generation sequencing. Here we describe the steps to generate a chemical genomic profile from a compound of interest, and how to use this information to predict molecular mechanism and targets of bioactive compounds.


Asunto(s)
Descubrimiento de Drogas/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética
14.
ACS Chem Biol ; 9(1): 247-57, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24117378

RESUMEN

Toll-like receptors (TLRs) play a critical role in innate immunity, but activation of TLR signaling pathways is also associated with many harmful inflammatory diseases. Identification of novel anti-inflammatory molecules targeting TLR signaling pathways is central to the development of new treatment approaches for acute and chronic inflammation. We performed high-throughput screening from crude marine sponge extracts on TLR5 signaling and identified girolline. We demonstrated that girolline inhibits signaling through both MyD88-dependent and -independent TLRs (i.e., TLR2, 3, 4, 5, and 7) and reduces cytokine (IL-6 and IL-8) production in human peripheral blood mononuclear cells and macrophages. Using a chemical genomics approach, we identified Elongation Factor 2 as the molecular target of girolline, which inhibits protein synthesis at the elongation step. Together these data identify the sponge natural product girolline as a potential anti-inflammatory agent acting through inhibition of protein synthesis.


Asunto(s)
Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Imidazoles/aislamiento & purificación , Imidazoles/farmacología , Poríferos/química , Biosíntesis de Proteínas/efectos de los fármacos , Animales , Células CHO , Células Cultivadas , Cricetulus , Evaluación Preclínica de Medicamentos , Humanos , Interleucina-6/inmunología , Interleucina-8/inmunología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , Receptores Toll-Like/inmunología
15.
PLoS One ; 8(7): e68664, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874711

RESUMEN

Analysis of genetic interaction networks often involves identifying genes with similar profiles, which is typically indicative of a common function. While several profile similarity measures have been applied in this context, they have never been systematically benchmarked. We compared a diverse set of correlation measures, including measures commonly used by the genetic interaction community as well as several other candidate measures, by assessing their utility in extracting functional information from genetic interaction data. We find that the dot product, one of the simplest vector operations, outperforms most other measures over a large range of gene pairs. More generally, linear similarity measures such as the dot product, Pearson correlation or cosine similarity perform better than set overlap measures such as Jaccard coefficient. Similarity measures that involve L2-normalization of the profiles tend to perform better for the top-most similar pairs but perform less favorably when a larger set of gene pairs is considered or when the genetic interaction data is thresholded. Such measures are also less robust to the presence of noise and batch effects in the genetic interaction data. Overall, the dot product measure performs consistently among the best measures under a variety of different conditions and genetic interaction datasets.


Asunto(s)
Epistasis Genética , Redes Reguladoras de Genes/fisiología , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Transcriptoma , Biología Computacional , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/fisiología , Ensayos Analíticos de Alto Rendimiento , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos
16.
Cancer Res ; 73(20): 6128-36, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23980094

RESUMEN

Synthetic lethal interactions enable a novel approach for discovering specific genetic vulnerabilities in cancer cells that can be exploited for the development of therapeutics. Despite successes in model organisms such as yeast, discovering synthetic lethal interactions on a large scale in human cells remains a significant challenge. We describe a comparative genomic strategy for identifying cancer-relevant synthetic lethal interactions whereby candidate interactions are prioritized on the basis of genetic interaction data available in yeast, followed by targeted testing of candidate interactions in human cell lines. As a proof of principle, we describe two novel synthetic lethal interactions in human cells discovered by this approach, one between the tumor suppressor gene SMARCB1 and PSMA4, and another between alveolar soft-part sarcoma-associated ASPSCR1 and PSMC2. These results suggest therapeutic targets for cancers harboring mutations in SMARCB1 or ASPSCR1 and highlight the potential of a targeted, cross-species strategy for identifying synthetic lethal interactions relevant to human cancer.


Asunto(s)
Neoplasias/genética , Animales , Técnicas de Cultivo de Célula , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Genómica , Humanos , Neoplasias/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína SMARCB1 , Factores de Transcripción/genética
17.
Mol Cancer Ther ; 12(6): 1140-50, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23536725

RESUMEN

Multiple myeloma is a hematologic malignancy characterized by the proliferation of neoplastic plasma cells in the bone marrow. Although the first-to-market proteasome inhibitor bortezomib (Velcade) has been successfully used to treat patients with myeloma, drug resistance remains an emerging problem. In this study, we identify signatures of bortezomib sensitivity and resistance by gene expression profiling (GEP) using pairs of bortezomib-sensitive (BzS) and bortezomib-resistant (BzR) cell lines created from the Bcl-XL/Myc double-transgenic mouse model of multiple myeloma. Notably, these BzR cell lines show cross-resistance to the next-generation proteasome inhibitors, MLN2238 and carfilzomib (Kyprolis) but not to other antimyeloma drugs. We further characterized the response to bortezomib using the Connectivity Map database, revealing a differential response between these cell lines to histone deacetylase (HDAC) inhibitors. Furthermore, in vivo experiments using the HDAC inhibitor panobinostat confirmed that the predicted responder showed increased sensitivity to HDAC inhibitors in the BzR line. These findings show that GEP may be used to document bortezomib resistance in myeloma cells and predict individual sensitivity to other drug classes. Finally, these data reveal complex heterogeneity within multiple myeloma and suggest that resistance to one drug class reprograms resistant clones for increased sensitivity to a distinct class of drugs. This study represents an important next step in translating pharmacogenomic profiling and may be useful for understanding personalized pharmacotherapy for patients with multiple myeloma.


Asunto(s)
Ácidos Borónicos/administración & dosificación , Resistencia a Antineoplásicos/genética , Perfilación de la Expresión Génica , Genes myc , Mieloma Múltiple/tratamiento farmacológico , Pirazinas/administración & dosificación , Proteína bcl-X/genética , Animales , Apoptosis/efectos de los fármacos , Bortezomib , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Inhibidores de Histona Desacetilasas/administración & dosificación , Histona Desacetilasas/genética , Humanos , Ratones , Ratones Transgénicos , Mieloma Múltiple/genética , Mieloma Múltiple/patología
18.
Genome Biol ; 13(7): R57, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22747640

RESUMEN

BACKGROUND: Synthetic genetic interactions have recently been mapped on a genome scale in the budding yeast Saccharomyces cerevisiae, providing a functional view of the central processes of eukaryotic life. Currently, comprehensive genetic interaction networks have not been determined for other species, and we therefore sought to model conserved aspects of genetic interaction networks in order to enable the transfer of knowledge between species. RESULTS: Using a combination of physiological and evolutionary properties of genes, we built models that successfully predicted the genetic interaction degree of S. cerevisiae genes. Importantly, a model trained on S. cerevisiae gene features and degree also accurately predicted interaction degree in the fission yeast Schizosaccharomyces pombe, suggesting that many of the predictive relationships discovered in S. cerevisiae also hold in this evolutionarily distant yeast. In both species, high single mutant fitness defect, protein disorder, pleiotropy, protein-protein interaction network degree, and low expression variation were significantly predictive of genetic interaction degree. A comparison of the predicted genetic interaction degrees of S. pombe genes to the degrees of S. cerevisiae orthologs revealed functional rewiring of specific biological processes that distinguish these two species. Finally, predicted differences in genetic interaction degree were independently supported by differences in co-expression relationships of the two species. CONCLUSIONS: Our findings show that there are common relationships between gene properties and genetic interaction network topology in two evolutionarily distant species. This conservation allows use of the extensively mapped S. cerevisiae genetic interaction network as an orthology-independent reference to guide the study of more complex species.


Asunto(s)
Redes Reguladoras de Genes , Genes Fúngicos , Modelos Genéticos , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Evolución Molecular , Aptitud Genética , Mutación , Especificidad de la Especie
19.
Org Lett ; 13(15): 3936-9, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21749075

RESUMEN

Two highly modified linear tetrapeptides, padanamides A (1) and B (2), are produced by laboratory cultures of a Streptomyces sp. obtained from a marine sediment. Padanamide B is cytotoxic to Jurkat cells, and a chemical genomics analysis using Saccharomyces cerevisiae deletion mutants suggested that padanamide A inhibits cysteine and methionine biosynthesis or that these amino acids are involved in the yeast's response to the peptide.


Asunto(s)
Sedimentos Geológicos/microbiología , Oligopéptidos/química , Streptomyces/química , Supervivencia Celular/efectos de los fármacos , Humanos , Células Jurkat , Modelos Moleculares , Estructura Molecular , Oligopéptidos/biosíntesis , Oligopéptidos/farmacología , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Streptomyces/aislamiento & purificación
20.
Science ; 327(5964): 425-31, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20093466

RESUMEN

A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for approximately 75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.


Asunto(s)
Redes Reguladoras de Genes , Genoma Fúngico , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biología Computacional , Duplicación de Gen , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Aptitud Genética , Redes y Vías Metabólicas , Mutación , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA