Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396772

RESUMEN

The interplay between metal ion binding and the activity of thiol proteins, particularly within the protein disulfide isomerase family, remains an area of active investigation due to the critical role that these proteins play in many vital processes. This research investigates the interaction between recombinant human PDIA1 and zinc ions, focusing on the subsequent implications for PDIA1's conformational stability and enzymatic activity. Employing isothermal titration calorimetry and differential scanning calorimetry, we systematically compared the zinc binding capabilities of both oxidized and reduced forms of PDIA1 and assessed the structural consequences of this interaction. Our results demonstrate that PDIA1 can bind zinc both in reduced and oxidized states, but with significantly different stoichiometry and more pronounced conformational effects in the reduced form of PDIA1. Furthermore, zinc binding was observed to inhibit the catalytic activity of reduced-PDIA1, likely due to induced alterations in its conformation. These findings unveil a potential regulatory mechanism in PDIA1, wherein metal ion binding under reductive conditions modulates its activity. Our study highlights the potential role of zinc in regulating the catalytic function of PDIA1 through conformational modulation, suggesting a nuanced interplay between metal binding and protein stability in the broader context of cellular redox regulation.


Asunto(s)
Procolágeno-Prolina Dioxigenasa , Proteína Disulfuro Isomerasas , Humanos , Oxidación-Reducción , Procolágeno-Prolina Dioxigenasa/metabolismo , Unión Proteica , Proteína Disulfuro Isomerasas/metabolismo , Zinc/química , Zinc/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108298

RESUMEN

Primary open-angle glaucoma (POAG) is a frequent blindness-causing neurodegenerative disorder characterized by optic nerve and retinal ganglion cell damage most commonly due to a chronic increase in intraocular pressure. The preservation of visual function in patients critically depends on the timeliness of detection and treatment of the disease, which is challenging due to its asymptomatic course at early stages and lack of objective diagnostic approaches. Recent studies revealed that the pathophysiology of glaucoma includes complex metabolomic and proteomic alterations in the eye liquids, including tear fluid (TF). Although TF can be collected by a non-invasive procedure and may serve as a source of the appropriate biomarkers, its multi-omics analysis is technically sophisticated and unsuitable for clinical practice. In this study, we tested a novel concept of glaucoma diagnostics based on the rapid high-performance analysis of the TF proteome by differential scanning fluorimetry (nanoDSF). An examination of the thermal denaturation of TF proteins in a cohort of 311 ophthalmic patients revealed typical profiles, with two peaks exhibiting characteristic shifts in POAG. Clustering of the profiles according to peaks maxima allowed us to identify glaucoma in 70% of cases, while the employment of artificial intelligence (machine learning) algorithms reduced the amount of false-positive diagnoses to 13.5%. The POAG-associated alterations in the core TF proteins included an increase in the concentration of serum albumin, accompanied by a decrease in lysozyme C, lipocalin-1, and lactotransferrin contents. Unexpectedly, these changes were not the only factor affecting the observed denaturation profile shifts, which considerably depended on the presence of low-molecular-weight ligands of tear proteins, such as fatty acids and iron. Overall, we recognized the TF denaturation profile as a novel biomarker of glaucoma, which integrates proteomic, lipidomic, and metallomic alterations in tears, and monitoring of which could be adapted for rapid non-invasive screening of the disease in a clinical setting.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Proteómica/métodos , Inteligencia Artificial , Glaucoma/diagnóstico , Glaucoma/complicaciones , Ojo/metabolismo , Presión Intraocular , Biomarcadores/metabolismo
3.
Molecules ; 27(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36500334

RESUMEN

Microtubule targeting agents (MTA) are anti-cancer molecules that bind tubulin and interfere with the microtubule functions, eventually leading to cell death. In the present study, we used an in vitro microtubule polymerization assay to screen several venom families for the presence of anti-microtubule activity. We isolated myotoxin-3, a peptide of the crotamine family, and three isoforms from the venom of the Northern Pacific rattlesnake Crotalus oreganus oreganus, which was able to increase tubulin polymerization. Myotoxin-3 turned out to be a cell-penetrating peptide that slightly diminished the viability of U87 glioblastoma and MCF7 breast carcinoma cells. Myotoxin 3 also induced remodeling of the U87 microtubule network and decreased MCF-7 microtubule dynamic instability. These effects are likely due to direct interaction with tubulin. Indeed, we showed that myotoxin-3 binds to tubulin heterodimer with a Kd of 5.3 µM and stoichiometry of two molecules of peptide per tubulin dimer. Our results demonstrate that exogenous peptides are good candidates for developing new MTA and highlight the richness of venoms as a source of pharmacologically active molecules.


Asunto(s)
Venenos de Crotálidos , Neurotoxinas , Animales , Humanos , Neurotoxinas/metabolismo , Tubulina (Proteína)/metabolismo , Crotalus/metabolismo , Venenos de Crotálidos/farmacología , Venenos de Crotálidos/metabolismo , Péptidos/farmacología , Péptidos/metabolismo
4.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34830487

RESUMEN

Neuronal calcium sensor-1 (NCS-1) is a four-EF-hand ubiquitous signaling protein modulating neuronal function and survival, which participates in neurodegeneration and carcinogenesis. NCS-1 recognizes specific sites on cellular membranes and regulates numerous targets, including G-protein coupled receptors and their kinases (GRKs). Here, with the use of cellular models and various biophysical and computational techniques, we demonstrate that NCS-1 is a redox-sensitive protein, which responds to oxidizing conditions by the formation of disulfide dimer (dNCS-1), involving its single, highly conservative cysteine C38. The dimer content is unaffected by the elevation of intracellular calcium levels but increases to 10-30% at high free zinc concentrations (characteristic of oxidative stress), which is accompanied by accumulation of the protein in punctual clusters in the perinuclear area. The formation of dNCS-1 represents a specific Zn2+-promoted process, requiring proper folding of the protein and occurring at redox potential values approaching apoptotic levels. The dimer binds Ca2+ only in one EF-hand per monomer, thereby representing a unique state, with decreased α-helicity and thermal stability, increased surface hydrophobicity, and markedly improved inhibitory activity against GRK1 due to 20-fold higher affinity towards the enzyme. Furthermore, dNCS-1 can coordinate zinc and, according to molecular modeling, has an asymmetrical structure and increased conformational flexibility of the subunits, which may underlie their enhanced target-binding properties. In HEK293 cells, dNCS-1 can be reduced by the thioredoxin system, otherwise accumulating as protein aggregates, which are degraded by the proteasome. Interestingly, NCS-1 silencing diminishes the susceptibility of Y79 cancer cells to oxidative stress-induced apoptosis, suggesting that NCS-1 may mediate redox-regulated pathways governing cell death/survival in response to oxidative conditions.


Asunto(s)
Señalización del Calcio/genética , Quinasa 1 del Receptor Acoplado a Proteína-G/genética , Neoplasias/genética , Proteínas Sensoras del Calcio Neuronal/genética , Neuronas/metabolismo , Neuropéptidos/genética , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Línea Celular Tumoral , Dimerización , Disulfuros/química , Motivos EF Hand/genética , Células HEK293 , Humanos , Cinética , Neoplasias/patología , Proteínas Sensoras del Calcio Neuronal/antagonistas & inhibidores , Neuronas/química , Neuropéptidos/antagonistas & inhibidores , Oxidación-Reducción , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética , Zinc/metabolismo
5.
Int J Mol Sci ; 21(23)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260324

RESUMEN

Transactive response DNA and RNA binding protein 43 kDa (TDP-43) is a highly conserved heterogeneous nuclear ribonucleoprotein (hnRNP), which is involved in several steps of protein production including transcription and splicing. Its aggregates are frequently observed in motor neurons from amyotrophic lateral sclerosis patients and in the most common variant of frontotemporal lobar degeneration. Recently it was shown that TDP-43 is able to bind Zn2+ by its RRM domain. In this work, we have investigated Zn2+ binding to a short peptide 256-264 from C-terminus of RRM2 domain using isothermal titration calorimetry, electrospray ionization mass spectrometry, QM/MM simulations, and NMR spectroscopy. We have found that this peptide is able to bind zinc ions with a Ka equal to 1.6 × 105 M-1. Our findings suggest the existence of a zinc binding site in the C-terminal region of RRM2 domain. Together with the existing structure of the RRM2 domain of TDP-43 we propose a model of its complex with Zn2+ which illustrates how zinc might regulate DNA/RNA binding.


Asunto(s)
Proteínas de Unión al ADN/química , Péptidos/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Simulación por Computador , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Péptidos/química , Unión Proteica , Conformación Proteica , Dominios Proteicos
6.
FASEB J ; 30(9): 3202-15, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27284003

RESUMEN

Stathmin is a prominent destabilizer of microtubules (MTs). Extensive in vitro studies have strongly suggested that stathmin could act by sequestering tubulin and/or by binding to MT tips. In cells, the molecular mechanisms of stathmin binding to tubulin and/or MTs and its implications for the MT dynamics remain unexplored. By using immunofluorescence resonance energy transfer and fluorescence recovery after photobleaching, we analyzed the ability of stathmin and its phosphorylated forms (on Ser16, -25, -38, and -63) to interact with tubulin and MTs in A549 cells. Consistent with in vitro studies, we detected stathmin-tubulin interactions at the MT plus ends and in the cytosol. Of interest, we also observed a novel pool of stathmin bound along the MT. Expression of truncated stathmin and use of MT-stabilizing taxol further showed that the C-terminal domain of stathmin is the main contributor to this binding and that the phosphorylation state of stathmin plays a role in its binding along the MT wall. Our findings demonstrate that stathmin binds directly along the MT wall. This pool of stathmin would be readily available to participate in protofilament dissociation when the moving plus end of a depolymerizing MT reaches stathmin molecules.-Nouar, R., Breuzard, G., Bastonero, S., Gorokhova, S., Barbier, P., Devred, F., Kovacic, H., Peyrot, V. Direct evidence for the interaction of stathmin along the length and the plus end of microtubules in cells.


Asunto(s)
Microtúbulos/fisiología , Estatmina/fisiología , Anticuerpos , Línea Celular Tumoral , ADN Complementario/genética , ADN Complementario/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Immunoblotting , Paclitaxel/farmacología , Fosforilación , Moduladores de Tubulina/farmacología
7.
Can J Microbiol ; 62(2): 123-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26639248

RESUMEN

Biofilms of live bacteria forming on medical devices and implants contribute significantly to bacterial blood dissemination and to the spread of nosocomial infections. Cell surface SdrD protein plays a key role in the attachment of Staphylococcus aureus to the extracellular matrix (ECM) and in the formation of biofilm. SdrD binds calcium ions using its B1-B5 region bearing EF-hand Ca-binding sites, leading to conformational changes in the structure of SdrD. This alters the distance between the bacterial surface and the ECM-interacting domain of SdrD in a spring-like fashion, participating in bacterial attachment. In this study we investigated calcium binding to EF-hand sites of SdrD using isothermal titration calorimetry and determined the impact of this process on SdrD's thermodynamic stability. This allowed us to propose a model of B1-B5 reorganization upon binding of calcium and to get new insight into the molecular mechanism of SdrD's action.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Proteínas Bacterianas/química , Proteínas de Unión al Calcio/química , Dominios Proteicos , Termodinámica
8.
J Cell Sci ; 126(Pt 13): 2810-9, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23659998

RESUMEN

Despite extensive studies, the molecular mechanisms of Tau binding to microtubules (MTs) and its consequences on MT stability still remain unclear. It is especially true in cells where the spatiotemporal distribution of Tau-MT interactions is unknown. Using Förster resonance energy transfer (FRET), we showed that the Tau-MT interaction was distributed along MTs in periodic hotspots of high and low FRET intensities. Fluorescence recovery after photobleaching (FRAP) revealed a two-phase exchange of Tau with MTs as a rapid diffusion followed by a slower binding phase. A real-time FRET assay showed that high FRET occurred simultaneously with rescue and pause transitions at MT ends. To further explore the functional interaction of Tau with MTs, the binding of paclitaxel (PTX), tubulin acetylation induced by trichostatin A (TSA), and the expression of non-acetylatable tubulin were used. With PTX and TSA, FRAP curves best fitted a single phase with a long time constant, whereas with non-acetylatable α-tubulin, curves best fitted a two phase recovery. Upon incubation with PTX and TSA, the number of high and low FRET hotspots decreased by up to 50% and no hotspot was observed during rescue and pause transitions. In the presence of non-acetylatable α-tubulin, a 34% increase in low FRET hotspots occurred, and our real-time FRET assay revealed that low FRET hotspots appeared with MTs recovering growth. In conclusion, we have identified, by FRET and FRAP, a discrete Tau-MT interaction, in which Tau could induce conformational changes of MTs, favoring recovery of MT self-assembly.


Asunto(s)
Microtúbulos/química , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Tubulina (Proteína)/química , Proteínas tau/química , Acetilación , Sitios de Unión , Línea Celular Tumoral , Recuperación de Fluorescencia tras Fotoblanqueo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ácidos Hidroxámicos/farmacología , Microtúbulos/metabolismo , Imagen Molecular , Paclitaxel/farmacología , Unión Proteica , Conformación Proteica/efectos de los fármacos , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo
9.
Biol Cell ; 105(4): 149-61, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23312015

RESUMEN

Microtubules (MTs) are involved in many crucial processes such as cell morphogenesis, mitosis and motility. These dynamic structures resulting from the complex assembly of tubulin are tightly regulated by stabilising MT-associated proteins (MAPs) such as tau and destabilising proteins, notably stathmin. Because of their key role, these MAPs and their interactions have been extensively studied using biochemical and biophysical approaches, particularly in vitro. Nevertheless, numerous questions remain unanswered and the mechanisms of interaction between MT and these proteins are still unclear in cells. Techniques coupling cell imaging and fluorescence methods, such as Förster resonance energy transfer and fluorescence recovery after photobleaching, are excellent tools to study these interactions in situ. After describing these methods, we will present emblematic data from the literature and unpublished experimental results from our laboratory concerning the interactions between MTs, tau and stathmin in cells.


Asunto(s)
Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Microtúbulos/metabolismo , Estatmina/metabolismo , Proteínas tau/metabolismo , Animales , Humanos , Microtúbulos/química , Unión Proteica , Estatmina/química , Proteínas tau/química
10.
J Chem Phys ; 141(3): 034201, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25053313

RESUMEN

The leaching of Al from intermetallic samples of Nickel Aluminium alloys to form Raney-type nickel catalysts is widely used in the hydrogenation industry, however, little is known of the leaching process itself. In this study, the leaching of Al was measured in realtime, in situ, using the high-flux powder neutron diffractometer, D20, at the Institut Laue-Langevin. Despite the liberation of hydrogen and effervescent nature of the reaction the transformation of the dry powder phases into Raney-type Ni was determined. Samples produced by gas-atomisation were found to leach faster than those produced using the cast and crushed technique. Regardless of processing route of the precursor powder, the formation of spongy-Ni occurs almost immediately, while Ni2Al3 and NiAl3 continue to transform over longer periods of time. Small-angle scattering and broadening of the diffraction peaks is an evidence for the formation of the smaller Ni particles. Understanding the kinetics of the leaching process will allow industry to refine production of catalysts for optimum manufacturing time while knowledge of leaching dynamics of powders produced by different manufacturing techniques will allow further tailoring of catalytic materials.

11.
ChemSusChem ; 16(13): e202300103, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-36916487

RESUMEN

The reductive catalytic fractionation (RCF) of lignocellulosic biomass is an attractive method for the conversion of lignin toward valuable low-molecular weight aromatics. A limitation to the upscaling of such technology is represented by the use ofpressurized hydrogen gas. Here, the role of hydrogen gas within the RCF of wheat straw biomass is investigated. The use of H2 is shown to enhance lignin depolymerization, by virtue of an improved hydrogenolysis and hydrogenation of lignin fragments, with a yield of phenolic monomers that increased from ca. 12 wt % of acid-insoluble lignin in the initial biomass under inert atmosphere to up to ca. 25 wt % under H2 (in methanol, at 250 °C, with Ru/C). The adoption of methanol, ethanol or isopropanol as hydrogen-donor solvents was also investigated in the absence of H2 . Ethanol was found to give the highest yield of monophenolic compounds (up to ≈20 wt %) owing to a better balance between solvolysis, hydrogenolysis, and hydrogenation of lignin. Nevertheless, a substantial loss of the carbohydrate fraction was observed. The use of a lower temperature (200 °C) in combination with H3 PO4 resulted in an improved recovery of cellulose in the pulp and in the solubilization of hemicellulose and lignin, with the formation of monosaccharides (≈14 wt % of polysaccharides in the initial biomass) and phenolic monomers (up to 18 wt %, in the absence of H2 ). Overall, a tradeoff exists between the removal of H2 from the process and the production of low-molecular weight phenolics during RCF.


Asunto(s)
Lignina , Triticum , Hidrógeno , Metanol , Biomasa , Etanol
12.
Cancers (Basel) ; 15(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36765718

RESUMEN

Glioblastoma (GBM) is the most frequent and aggressive primary brain tumor in adults. Recently, we demonstrated that plasma denaturation profiles of glioblastoma patients obtained using Differential Scanning Fluorimetry can be automatically distinguished from healthy controls with the help of Artificial Intelligence (AI). Here, we used a set of machine-learning algorithms to automatically classify plasma denaturation profiles of glioblastoma patients according to their EGFR status. We found that Adaboost AI is able to discriminate EGFR alterations in GBM with an 81.5% accuracy. Our study shows that the use of these plasma denaturation profiles could answer the unmet neuro-oncology need for diagnostic predictive biomarker in combination with brain MRI and clinical data, in order to allow for a rapid orientation of patients for a definitive pathological diagnosis and then treatment. We complete this study by showing that discriminating another mutation, MGMT, seems harder, and that post-surgery monitoring using our approach is not conclusive in the 48 h that follow the surgery.

13.
Cancers (Basel) ; 14(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36358803

RESUMEN

Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis. With the intention of finding new therapeutic targets for cancer, it appears essential to examine the interaction of Tau with these kinases and their consequences. This review aims at collecting the literature data supporting the relationship between Tau and cancer with a particular focus on glioblastoma tumors in which the pathological significance of Tau remains largely unexplored. We will first treat this subject from a mechanistic point of view showing the pivotal role of Tau in oncogenic processes. Then, we will discuss the involvement of Tau in dysregulating critical pathways in glioblastoma. Finally, we will outline promising strategies to target Tau protein for the therapy of glioblastoma.

14.
Int J Biol Macromol ; 209(Pt A): 779-784, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35421417

RESUMEN

Tau protein has been extensively studied due to its key roles in microtubular cytoskeleton regulation and in the formation of aggregates found in some neurodegenerative diseases. Recently it has been shown that zinc is able to induce tau aggregation by interacting with several binding sites. However, the precise location of these sites and the molecular mechanism of zinc-induced aggregation remain unknown. Here we used Nuclear Magnetic Resonance (NMR) to identify zinc binding sites on tau. These experiments revealed three distinct zinc binding sites on tau, located in the N-terminal part, the repeat region and the C-terminal part. Further analysis enabled us to show that the N-terminal and the C-terminal sites are independent of each other. Using molecular simulations, we proposed a model of each site in a complex with zinc. Given the clinical importance of zinc in tau aggregation, our findings pave the way for designing potential therapies for tauopathies.


Asunto(s)
Tauopatías , Proteínas tau , Sitios de Unión , Humanos , Microtúbulos/metabolismo , Unión Proteica , Tauopatías/metabolismo , Zinc/metabolismo , Proteínas tau/química
15.
Int J Biol Macromol ; 223(Pt A): 1223-1229, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36375666

RESUMEN

Tau is a naturally disordered microtubule associated protein which forms intraneuronal aggregates in several neurodegenerative diseases including Alzheimer's disease (AD). It was reported that zinc interaction with tau protein can trigger its aggregation. Recently we identified three zinc binding sites located in the N-terminal part, repeat region and the C-terminal part of tau. Here we characterized zinc binding to each of the three sites using isothermal titration calorimetry (ITC) and determined the impact of each site on aggregation using dynamic light scattering (DLS) assays. First, we confirmed the presence of three zinc binding sites on tau and determined the thermodynamic parameters of binding of zinc to these sites. We found a high-affinity zinc binding site located in the repeat region of tau and two N- and C-terminus binding sites with a lower binding constant for zinc. Second, we showed that tau aggregation necessitates zinc binding to the high affinity site in the R2R3 region, while LLPS necessitates zinc binding to any two binding sites. With regard to the role of zinc ions in the aggregation of proteins in neurodegenerative diseases, these findings bring new insights to the understanding of the aggregation mechanism of tau protein induced by zinc.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Proteínas tau/química , Zinc/farmacología , Enfermedad de Alzheimer/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Sitios de Unión , Iones
16.
Cell Rep ; 40(7): 111200, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977506

RESUMEN

Apolipoprotein E4 (APOEε4) is the major allelic risk factor for late-onset sporadic Alzheimer's disease (sAD). Inflammation is increasingly considered as critical in sAD initiation and progression. Identifying brain molecular mechanisms that could bridge these two risk factors remain unelucidated. Leveraging induced pluripotent stem cell (iPSC)-based strategies, we demonstrate that APOE controls inflammation in human astrocytes by regulating Transgelin 3 (TAGLN3) expression and, ultimately, nuclear factor κB (NF-κB) activation. We uncover that APOE4 specifically downregulates TAGLN3, involving histone deacetylases activity, which results in low-grade chronic inflammation and hyperactivated inflammatory responses. We show that APOE4 exerts a dominant negative effect to prime astrocytes toward a pro-inflammatory state that is pharmacologically reversible by TAGLN3 supplementation. We further confirm that TAGLN3 is downregulated in the brain of patients with sAD. Our findings highlight the APOE-TAGLN3-NF-κB axis regulating neuroinflammation in human astrocytes and reveal TAGLN3 as a molecular target to modulate neuroinflammation, as well as a potential biomarker for AD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Apolipoproteínas E/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Astrocitos/metabolismo , Humanos , Inflamación/metabolismo , FN-kappa B/metabolismo
17.
ACS Nano ; 16(10): 15837-15849, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36066922

RESUMEN

High-entropy-alloy (HEA) nanoparticles are attractive for several applications in catalysis and energy. Great efforts are currently devoted to establish composition-property relationships to improve catalytic activity or selectivity. Equally importantly, developing practical fabrication methods for shaping HEA-based materials into complex architectures is a key requirement for their utilization in catalysis. However, shaping nano-HEAs into hierarchical structures avoiding demixing or collapse remains a great challenge. Herein, we overcome this issue by introducing a simple soft-chemistry route to fabricate ordered macro- and mesoporous materials based on HEA nanoparticles, with high surface area, thermal stability, and catalytic activity toward CO oxidation. The process is based on spray-drying from an aqueous solution containing five different noble metal precursors and polymer latex beads. Upon annealing, the polymer plays a double role: templating and reducing agent enabling formation of HEA nanoparticle-based porous networks at only 350 °C. The formation mechanism and the stability of the macro- and mesoporous materials were investigated by a set of in situ characterization techniques; notably, in situ transmission electron microscopy unveiled that the porous structure is stable up to 800 °C. Importantly, this process is green, scalable, and versatile and could be potentially extended to other classes of HEA materials.

18.
Biomolecules ; 12(7)2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35883512

RESUMEN

Neuronal calcium sensors (NCSs) are the family of EF-hand proteins mediating Ca2+-dependent signaling pathways in healthy neurons and neurodegenerative diseases. It was hypothesized that the calcium sensor activity of NCSs can be complemented by sensing fluctuation of intracellular zinc, which could further diversify their function. Here, using a set of biophysical techniques, we analyzed the Zn2+-binding properties of five proteins belonging to three different subgroups of the NCS family, namely, VILIP1 and neurocalcin-δ/NCLD (subgroup B), recoverin (subgroup C), as well as GCAP1 and GCAP2 (subgroup D). We demonstrate that each of these proteins is capable of coordinating Zn2+ with a different affinity, stoichiometry, and structural outcome. In the absence of calcium, recoverin and VILIP1 bind two zinc ions with submicromolar affinity, and the binding induces pronounced conformational changes and regulates the dimeric state of these proteins without significant destabilization of their structure. In the presence of calcium, recoverin binds zinc with slightly decreased affinity and moderate conformational outcome, whereas VILIP1 becomes insensitive to Zn2+. NCALD binds Zn2+ with micromolar affinity, but the binding induces dramatic destabilization and aggregation of the protein. In contrast, both GCAPs demonstrate low-affinity binding of zinc independent of calcium, remaining relatively stable even at submillimolar Zn2+ concentrations. Based on these data, and the results of structural bioinformatics analysis, NCSs can be divided into three categories: (1) physiological Ca2+/Zn2+ sensor proteins capable of binding exchangeable (signaling) zinc (recoverin and VILIP1), (2) pathological Ca2+/Zn2+ sensors responding only to aberrantly high free zinc concentrations by denaturation and aggregation (NCALD), and (3) Zn2+-resistant, Ca2+ sensor proteins (GCAP1, GCAP2). We suggest that NCS proteins may therefore govern the interconnection between Ca2+-dependent and Zn2+-dependent signaling pathways in healthy neurons and zinc cytotoxicity-related neurodegenerative diseases, such as Alzheimer's disease and glaucoma.


Asunto(s)
Calcio , Proteínas Sensoras del Calcio Neuronal , Calcio/metabolismo , Motivos EF Hand , Proteínas Sensoras del Calcio Neuronal/metabolismo , Unión Proteica/fisiología , Recoverina/química , Recoverina/metabolismo , Zinc/metabolismo
19.
J Biol Chem ; 285(41): 31672-81, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20675373

RESUMEN

Tubulin is able to switch between a straight microtubule-like structure and a curved structure in complex with the stathmin-like domain of the RB3 protein (T(2)RB3). GTP hydrolysis following microtubule assembly induces protofilament curvature and disassembly. The conformation of the labile tubulin heterodimers is unknown. One important question is whether free GDP-tubulin dimers are straightened by GTP binding or if GTP-tubulin is also curved and switches into a straight conformation upon assembly. We have obtained insight into the bending flexibility of tubulin by analyzing the interplay of tubulin-stathmin association with the binding of several small molecule inhibitors to the colchicine domain at the tubulin intradimer interface, combining structural and biochemical approaches. The crystal structures of T(2)RB3 complexes with the chiral R and S isomers of ethyl-5-amino-2-methyl-1,2-dihydro-3-phenylpyrido[3,4-b]pyrazin-7-yl-carbamate, show that their binding site overlaps with colchicine ring A and that both complexes have the same curvature as unliganded T(2)RB3. The binding of these ligands is incompatible with a straight tubulin structure in microtubules. Analytical ultracentrifugation and binding measurements show that tubulin-stathmin associations (T(2)RB3, T(2)Stath) and binding of ligands (R, S, TN-16, or the colchicine analogue MTC) are thermodynamically independent from one another, irrespective of tubulin being bound to GTP or GDP. The fact that the interfacial ligands bind equally well to tubulin dimers or stathmin complexes supports a bent conformation of the free tubulin dimers. It is tempting to speculate that stathmin evolved to recognize curved structures in unassembled and disassembling tubulin, thus regulating microtubule assembly.


Asunto(s)
Microtúbulos , Multimerización de Proteína , Estatmina/química , Tubulina (Proteína)/química , Animales , Cristalografía por Rayos X , Humanos , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Ovinos , Estatmina/agonistas , Estatmina/metabolismo , Tubulina (Proteína)/agonistas , Tubulina (Proteína)/metabolismo
20.
Nanomaterials (Basel) ; 11(11)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34835601

RESUMEN

In this study, a bio-derived precipitating agent/ligand, palm kernel oil, has been used as an alternative route for the green synthesis of nanoparticles of Fe-doped Co3O4 via the co-precipitation reaction. The palm oil was extracted from dried palm kernel seeds by crushing, squeezing and filtration. The reaction of the palm kernel oil with potassium hydroxide, under reflux, yielded a solution containing a mixture of potassium carboxylate and excess hydroxide ions, irrespective of the length of saponification. The as-obtained solution reacts with an aqueous solution containing iron and cobalt ions to yield the desired metallo-organic precursor, iron cobalt carboxylate. Characterization of the precursors by IR and gas chromatography (GC) attests to the presence of carboxylate fatty acids in good agreement with the proportion contained in the oil, and ICP confirms that the metallic ratios are in the proportion used during the synthesis. Analysis of the products thermally decomposed between 400 °C and 600 °C by XRD, EDX, TEM and ToF-SIMS, established that cobalt iron oxide nanoparticles (Co(1-x)Fex)3O4 were obtained for x ≤ 0.2 and a nanocomposite material (Co(1-x)Fex)3O4/Fe3O4 for x ≥ 0.2, with sizes between 22 and 9 nm. ToF-SIMS and XRD provided direct evidence of the progressive substitution of cobalt by iron in the Co3O4 crystal structure for x ≤ 0.2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA