Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Exp Pathol ; 105(2): 64-74, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38328944

RESUMEN

Transforming growth factor (TGF)-ß and toll-like receptors (TLRs) have been shown to independently modulate the proliferation of hepatocellular carcinoma (HCC). Since a direct cross-talk between these two signalling pathways in HCC has not been clearly described before, we aimed here to explore the possibility of such interaction. A human HCC tissue array (n = 20 vs. four control samples), human HCC samples (n = 10) and steatohepatitis-driven murine HCC samples (control, NASH and HCC; n = 6/group) were immunostained for TGFßR1, pSMAD2, TRAF6, IRAK1 and PCNA. The results were confirmed by immunoblotting. Effects of constant activation of the SMAD pathway by constitutive expression of ALK5 or knockdown of mediators of TLR signalling, IRAK1 and MyD88, on HCC proliferation, were investigated in the HCC cell line (HUH-7) after treatment with TGFß1 cytokine or TGFßR1 kinase inhibitor (LY2157299) using PCNA and MTS assay. TGFßR1 expression is decreased in human and murine HCC and associated with downregulated pSMAD2, but increased IRAK1, TRAF6 and PCNA staining. TGFßR1 kinase inhibition abolished the cytostatic effects of TGFß1 and led to the induction of IRAK1, pIRAK1 and elevated mRNA levels of TLR-9. Overexpression of ALK5 and knockdown of MyD88 or IRAK1 augmented the cytostatic effects of TGFß1 on HUH-7. In another epithelial HCC cell line, that is, HepG2, TGFßR1 kinase inhibitor similarly elevated cellular proliferation. There is a balance between the canonical SMAD-driven tumour-suppressing arm and the non-canonical tumour-promoting arm of TGFß signalling. Disruption of this balance, by inhibition of the canonical pathway, induces HCC proliferation through TLR signalling.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Citostáticos , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/patología , Proliferación Celular , Neoplasias Hepáticas/patología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
2.
J Hepatol ; 77(6): 1504-1514, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35988689

RESUMEN

BACKGROUND & AIMS: Adipose tissue dysfunction is involved in the development of insulin resistance and is responsible for excessive lipid delivery to other organs such as the liver. We tested the hypothesis that impaired mitochondrial function is a common feature of subcutaneous (SAT) and visceral adipose tissue (VAT), but may differently contribute to adipose tissue insulin resistance (IR) in obesity, non-alcoholic fatty liver (NAFL) and steatohepatitis (NASH). METHODS: In this cross-sectional study, we analyzed tissue-specific insulin sensitivity using stable isotope dilution and hyperinsulinemic-normoglycemic clamp tests. We also assessed mitochondrial respiration, mRNA and protein expression, and tissue morphology in biopsies of SAT and VAT from obese humans without NAFL, with NAFL or with NASH (n = 22/group). RESULTS: Compared to individuals without liver disease, persons with NAFL and NASH had about 30% (p = 0.010) and 33% (p = 0.002) lower maximal mitochondrial respiration, respectively, in VAT, but not in SAT. The lower maximal mitochondrial respiration of VAT was associated with lower adipose tissue insulin sensitivity (ß = 0.985, p = 0.041) and with increased VAT protein expression of tumor necrosis factor A across all groups (ß = -0.085, p = 0.040). VAT from individuals with NASH was characterized by lower expression of oxidative phosphorylation complex IV (p = 0.042) and higher mRNA expression of the macrophage marker CD68 (p = 0.002) than VAT from participants without NAFL. CONCLUSIONS: Humans with non-alcoholic fatty liver disease have distinct abnormalities of VAT energy metabolism, which correlate with adipose tissue dysfunction and may favor progression of NAFL to NASH. LAY SUMMARY: Adipose tissue (commonly called body fat) can be found under the skin (subcutaneous) or around internal organs (visceral). Dysfunction of adipose tissue can cause insulin resistance and lead to excess delivery of fat to other organs such as the liver. Herein, we show that dysfunction specifically in visceral adipose tissue was associated with fatty liver disease. CLINICAL TRIAL NUMBER: NCT01477957.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Estudios Transversales , Obesidad/complicaciones , Respiración , Tejido Adiposo , Mitocondrias , ARN Mensajero
3.
Pharmacol Res ; 179: 106193, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35358682

RESUMEN

Early-life diets may have a long-lasting impact on metabolic health. This study tested the hypothesis that an early-life diet with large, phospholipid-coated lipid droplets (Concept) induces sustained improvements of hepatic mitochondrial function and metabolism. Young C57BL/6j mice were fed Concept or control (CTRL) diet from postnatal day 15 (PN15) to PN42, followed by western style (WSD) or standard rodent diet (AIN) until PN98. Measurements comprised body composition, insulin resistance (HOMA-IR), tricarboxylic acid (TCA) cycle- and ß-oxidation-related hepatic oxidative capacity using high-resolution respirometry, mitochondrial dynamics, mediators of insulin resistance (diacylglycerols, DAG) or ceramides) in subcellular compartments as well as systemic oxidative stress. Concept feeding increased TCA cycle-related respiration by 33% and mitochondrial fusion protein-1 by 65% at PN42 (both p 0.05). At PN98, CTRL, but not Concept, mice developed hyperinsulinemia (CTRL/AIN 0.22 ± 0.44 vs. CTRL/WSD 1.49 ± 0.53 nmol/l, p 0.05 and Concept/AIN 0.20 ± 0.38 vs. Concept/WSD 1.00 ± 0.29 nmol/l, n.s.) and insulin resistance after WSD (CTRL/AIN 107 ± 23 vs. CTRL/WSD 738 ± 284, p 0.05 and Concept/AIN 109 ± 24 vs. Concept/WSD 524 ± 157, n.s.). WSD-induced liver weight was 18% lower in adult Concept-fed mice and ß-oxidation-related respiration was 69% higher (p 0.05; Concept/WSD vs. Concept/AIN) along with lower plasma lipid peroxides (CTRL/AIN 4.85 ± 0.28 vs. CTRL/WSD 5.73 ± 0.47 µmol/l, p 0.05 and Concept/AIN 4.49 ± 0.31 vs. Concept/WSD 4.42 ± 0.33 µmol/l, n.s.) and were in part protected from WSD-induced increase in hepatic cytosolic DAG C16:0/C18:1. Early-life feeding of Concept partly protected from WSD-induced insulin resistance and systemic oxidative stress, potentially via changes in specific DAG and mitochondrial function, highlighting the role of early life diets on metabolic health later in life.


Asunto(s)
Resistencia a la Insulina , Metabolismo de los Lípidos , Animales , Dieta , Grasas de la Dieta , Modelos Animales de Enfermedad , Gotas Lipídicas/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL
4.
Gut ; 69(9): 1677-1690, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31992593

RESUMEN

OBJECTIVE: TGF-ß2 (TGF-ß, transforming growth factor beta), the less-investigated sibling of TGF-ß1, is deregulated in rodent and human liver diseases. Former data from bile duct ligated and MDR2 knockout (KO) mouse models for human cholestatic liver disease suggested an involvement of TGF-ß2 in biliary-derived liver diseases. DESIGN: As we also found upregulated TGFB2 in liver tissue of patients with primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), we now fathomed the positive prospects of targeting TGF-ß2 in early stage biliary liver disease using the MDR2-KO mice. Specifically, the influence of TgfB2 silencing on the fibrotic and inflammatory niche was analysed on molecular, cellular and tissue levels. RESULTS: TgfB2-induced expression of fibrotic genes in cholangiocytes and hepatic stellate cellswas detected. TgfB2 expression in MDR2-KO mice was blunted using TgfB2-directed antisense oligonucleotides (AON). Upon AON treatment, reduced collagen deposition, hydroxyproline content and αSMA expression as well as induced PparG expression reflected a significant reduction of fibrogenesis without adverse effects on healthy livers. Expression analyses of fibrotic and inflammatory genes revealed AON-specific regulatory effects on Ccl3, Ccl4, Ccl5, Mki67 and Notch3 expression. Further, AON treatment of MDR2-KO mice increased tissue infiltration by F4/80-positive cells including eosinophils, whereas the number of CD45-positive inflammatory cells decreased. In line, TGFB2 and CD45 expression correlated positively in PSC/PBC patients and localised in similar areas of the diseased liver tissue. CONCLUSIONS: Taken together, our data suggest a new mechanistic explanation for amelioration of fibrogenesis by TGF-ß2 silencing and provide a direct rationale for TGF-ß2-directed drug development.


Asunto(s)
Colangitis Esclerosante , Silenciador del Gen , Cirrosis Hepática Biliar , Cirrosis Hepática , Oligonucleótidos Antisentido , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Colangitis Esclerosante/metabolismo , Colangitis Esclerosante/patología , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/prevención & control , Cirrosis Hepática Biliar/metabolismo , Cirrosis Hepática Biliar/patología , Ratones , Ratones Noqueados , Regulación hacia Arriba , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
5.
Arch Toxicol ; 93(9): 2645-2660, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31435712

RESUMEN

Although liver transplantation is a potential effective cure for patients with end-stage liver diseases, this strategy has several drawbacks including high cost, long waiting list, and limited availability of liver organs. Therefore, stem cell-based therapy is presented as an alternative option, which showed promising results in animal models of acute and chronic liver injuries. ABCB5+ cells isolated from skin dermis represent an easy accessible and expandable source of homogenous stem cell populations. In addition, ABCB5+ cells showed already promising results in the treatment of corneal and skin injury. To date, the effect of these cells on liver injury is still unknown. In the current study, sixteen weeks old Mdr2KO mice were i.v. injected with 500,000 ABCB5+ cells using different experimental setups. The effects of cellular therapy on inflammation, fibrosis, apoptosis, and proliferation were analyzed in the collected liver tissues. Toxicity of ABCB5+ cells was additionally investigated in mice with partial liver resection. In vitro, the fibrosis- and inflammatory-modulating effects of supernatant from ABCB5+ cells were examined in the human hepatic stellate cell line (LX-2). Cell injections into fibrotic Mdr2KO mice as well as into mice upon partial liver resection have no signs of toxicity with regard to cell transformation, cellular damage, fibrosis or inflammation as compared to controls. We next investigated the effects of ABCB5+ cells on established biliary liver fibrosis in the Mdr2KO mice. ABCB5+ cells to some extent influenced the shape of the liver inflammatory response and significantly reduced the amount of collagen deposition, as estimated from quantification of sirius red staining. Furthermore, reduced apoptosis and enhanced death compensatory proliferation resulted from ABCB5+ cell transformation. The stem cells secreted several trophic factors that activated TGF-ß family signaling in cultured LX-2 hepatic stellate cells (HSCs), therewith shaping cell fate to an αSMAhigh, Vimentinlow phenotype. Taken together, ABCB5+ cells can represent a safe and feasible strategy to support liver regeneration and to reduce liver fibrosis in chronic liver diseases.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Cirrosis Hepática/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Animales , Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Humanos , Inyecciones Intravenosas , Cirrosis Hepática/metabolismo , Pruebas de Función Hepática , Células Madre Mesenquimatosas/citología , Ratones Endogámicos BALB C , Ratones Noqueados , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
6.
Arch Toxicol ; 93(12): 3669-3670, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31664497

RESUMEN

We wish to submit a corrigendum to the above-mentioned article. Thank you very much for consideration and publication.

7.
Arch Toxicol ; 92(8): 2549-2561, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29974145

RESUMEN

Tamoxifen (TAM) is commonly used for cell type specific Cre recombinase-induced gene inactivation and in cell fate tracing studies. Inducing a gene knockout by TAM and using non-TAM exposed mice as controls lead to a situation where differences are interpreted as consequences of the gene knockout but in reality result from TAM-induced changes in hepatic metabolism. The degree to which TAM may compromise the interpretation of animal experiments with inducible gene expression still has to be elucidated. Here, we report that TAM strongly attenuates CCl4-induced hepatotoxicity in male C57Bl/6N mice, even after a 10 days TAM exposure-free period. TAM decreased (p < 0.0001) the necrosis index and the level of aspartate- and alanine transaminases in CCl4-treated compared to vehicle-exposed mice. TAM pretreatment also led to the downregulation of CYP2E1 (p = 0.0045) in mouse liver tissue, and lowered its activity in CYP2E1 expressing HepG2 cell line. Furthermore, TAM increased the level of the antioxidant ascorbate, catalase, SOD2, and methionine, as well as phase II metabolizing enzymes GSTM1 and UGT1A1 in CCl4-treated livers. Finally, we found that TAM increased the presence of resident macrophages and recruitment of immune cells in necrotic areas of the livers as indicated by F4/80 and CD45 staining. In conclusion, we reveal that TAM increases liver resistance to CCl4-induced toxicity. This finding is of high relevance for studies using the tamoxifen-inducible expression system particularly if this system is used in combination with hepatotoxic compounds such as CCl4.


Asunto(s)
Tetracloruro de Carbono/toxicidad , Integrasas/genética , Hígado/efectos de los fármacos , Tamoxifeno/farmacología , Animales , Antioxidantes/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Citocromo P-450 CYP2E1/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Inactivación Metabólica/efectos de los fármacos , Inactivación Metabólica/genética , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Sustancias Protectoras/farmacología , Xenobióticos/farmacocinética
8.
Am J Pathol ; 186(7): 1874-1889, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27171900

RESUMEN

Disrupting Notch signaling ameliorates experimental liver fibrosis. However, the role of individual Notch ligands in liver damage is unknown. We investigated the effects of Delta-like ligand 4 (Dll4) in liver disease. DLL4 expression was measured in 31 human liver tissues by immunohistochemistry. Dll4 function was examined in carbon tetrachloride- and bile duct ligation-challenged mouse models in vivo and evaluated in hepatic stellate cells, hepatocytes, and Kupffer cells in vitro. DLL4 was expressed in patients' Kupffer and liver sinusoidal endothelial cells. Recombinant Dll4 protein (rDll4) ameliorated hepatocyte apoptosis, inflammation, and fibrosis in mice after carbon tetrachloride challenge. In vitro, rDll4 significantly decreased lipopolysaccharide-dependent chemokine expression in both Kupffer and hepatic stellate cells. In bile duct ligation mice, rDll4 induced massive hepatic necrosis, resulting in the death of all animals within 1 week. Inflammatory cell infiltration and chemokine ligand 2 (Ccl2) expression were significantly reduced in rDll4-receiving bile duct ligation mice. Recombinant Ccl2 rescued bile duct ligation mice from rDll4-mediated death. In patients with acute-on-chronic liver failure, DLL4 expression was inversely associated with CCL2 abundance. Mechanistically, Dll4 regulated Ccl2 expression via NF-κB. Taken together, Dll4 modulates liver inflammatory response by down-regulating chemokine expression. rDll4 application results in opposing outcomes in two models of liver damage. Loss of DLL4 may be associated with CCL2-mediated cytokine storm in patients with acute-on-chronic liver failure.


Asunto(s)
Quimiocinas/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hepatopatías/patología , Proteínas de la Membrana/metabolismo , Animales , Western Blotting , Quimiocina CCL2/biosíntesis , Regulación hacia Abajo , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunohistoquímica , Hepatopatías/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Metabolism ; 151: 155762, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38122893

RESUMEN

BACKGROUND: Obesity and type 2 diabetes frequently have metabolic dysfunction-associated steatotic liver disease (MASLD) including steatohepatitis (MASH). In obesity, the liver may adapt its oxidative capacity, but the role of mitochondrial turnover in MASLD remains uncertain. METHODS: This cross-sectional study compared individuals with class III obesity (n = 8/group) without (control, OBE CON; NAFLD activity score: 0.4 ± 0.1) or with steatosis (OBE MASL, 2.3 ± 0.4), or MASH (OBE MASH, 5.3 ± 0.3, p < 0.05 vs. other groups). Hepatic mitochondrial ultrastructure was assessed by transmission electron microscopy, mitochondrial respiration by high-resolution respirometry, biomarkers of mitochondrial quality control and endoplasmic reticulum (ER) stress by Western Blot. RESULTS: Mitochondrial oxidative capacity was 31 % higher in OBE MASL, but 25 % lower in OBE MASH (p < 0.05 vs. OBE CON). OBE MASH showed ~1.5fold lower mitochondrial number, but ~1.2-1.5fold higher diameter and area (p < 0.001 vs. other groups). Biomarkers of autophagy (p62), mitophagy (PINK1, PARKIN), fission (DRP-1, FIS1) and fusion (MFN1/2, OPA1) were reduced in OBE MASH (p < 0.05 vs. OBE CON). OBE MASL showed lower p62, p-PARKIN/PARKIN, and p-DRP-1 (p < 0.05 vs. OBE CON). OBE MASL and MASH showed higher ER stress markers (PERK, ATF4, p-eIF2α-S51/eIF2α; p < 0.05 vs. OBE CON). Mitochondrial diameter associated inversely with fusion/fission biomarkers and with oxidative capacity, but positively with H2O2. CONCLUSION: Humans with hepatic steatosis already exhibit impaired mitochondrial turnover, despite upregulated oxidative capacity, and evidence for ER stress. In MASH, oxidative stress likely mediates progressive decline of mitochondrial turnover, ultrastructure and respiration indicating that mitochondrial quality control is key for energy metabolism and may have potential for targeting MASH. ClinGovTrial:NCT01477957.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hígado Graso , Enfermedad del Hígado Graso no Alcohólico , Humanos , Estudios Transversales , Peróxido de Hidrógeno , Mitofagia , Obesidad/complicaciones , Obesidad/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Biomarcadores
10.
EBioMedicine ; 94: 104714, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37454552

RESUMEN

BACKGROUND: Disturbed hepatic energy metabolism contributes to non-alcoholic fatty liver (NAFLD), but the development of changes over time and obesity- or diabetes-related mechanisms remained unclear. METHODS: Two-day old male C57BL/6j mice received streptozotocin (STZ) or placebo (PLC) and then high-fat (HFD) or regular chow diet (RCD) from week 4 (W4) to either W8 or W16, yielding control [CTRL = PLC + RCD], diabetes [DIAB = STZ + RCD], obesity [OBES = PLC + HFD] and diabetes-related non-alcoholic steatohepatitis [NASH = STZ + HFD] models. Mitochondrial respiration was measured by high-resolution respirometry and insulin-sensitive glucose metabolism by hyperinsulinemic-euglycemic clamps with stable isotope dilution. FINDINGS: NASH showed higher steatosis and NAFLD activity already at W8 and liver fibrosis at W16 (all p < 0.01 vs CTRL). Ballooning was increased in DIAB and NASH at W16 (p < 0.01 vs CTRL). At W16, insulin sensitivity was 47%, 58% and 75% lower in DIAB, NASH and OBES (p < 0.001 vs CTRL). Hepatic uncoupled fatty acid oxidation (FAO)-associated respiration was reduced in OBES at W8, but doubled in DIAB and NASH at W16 (p < 0.01 vs CTRL) and correlated with biomarkers of unfolded protein response (UPR), oxidative stress and hepatic expression of certain enzymes (acetyl-CoA carboxylase 2, Acc2; carnitine palmitoyltransferase I, Cpt1a). Tricarboxylic acid cycle (TCA)-driven respiration was lower in OBES at W8 and doubled in DIAB at W16 (p < 0.0001 vs CTRL), which positively correlated with expression of genes related to lipolysis. INTERPRETATION: Hepatic mitochondria adapt to various metabolic challenges with increasing FAO-driven respiration, which is linked to dysfunctional UPR, systemic oxidative stress, insulin resistance and altered lipid metabolism. In a diabetes model, higher TCA-linked respiration reflected mitochondrial adaptation to greater hepatic lipid turnover. FUNDING: Funding bodies that contributed to this study were listed in the acknowledgements section.


Asunto(s)
Diabetes Mellitus , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Masculino , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Hígado/metabolismo , Metabolismo Energético , Obesidad/etiología , Obesidad/metabolismo , Diabetes Mellitus/metabolismo , Dieta Alta en Grasa/efectos adversos
11.
Mol Metab ; 75: 101775, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37451343

RESUMEN

OBJECTIVE: Dextromethorphan (DXM) is a commonly used antitussive medication with positive effects in people with type 2 diabetes mellitus, since it increases glucose tolerance and protects pancreatic islets from cell death. However, its use as an antidiabetic medication is limited due to its central nervous side effects and potential use as a recreational drug. Therefore, we recently modified DXM chemically to reduce its blood-brain barrier (BBB) penetration and central side effects. However, our best compound interacted with the cardiac potassium channel hERG (human ether-à-go-go-related gene product) and the µ-opioid receptor (MOR). Thus, the goal of this study was to reduce the interaction of our compound with these targets, while maintaining its beneficial properties. METHODS: Receptor and channel binding assays were conducted to evaluate the drug safety of our DXM derivative. Pancreatic islets were used to investigate the effect of the compound on insulin secretion and islet cell survival. Via liquor collection from the brain and a behavioral assay, we analyzed the BBB permeability. By performing intraperitoneal and oral glucose tolerance tests as well as pharmacokinetic analyses, the antidiabetic potential and elimination half-life were investigated, respectively. To analyze the islet cell-protective effect, we used fluorescence microscopy as well as flow cytometric analyses. RESULTS: Here, we report the design and synthesis of an optimized, orally available BBB-impermeable DXM derivative with lesser binding to hERG and MOR than previous ones. We also show that the new compound substantially enhances glucose-stimulated insulin secretion (GSIS) from mouse and human islets and glucose tolerance in mice as well as protects pancreatic islets from cell death induced by reactive oxygen species and that it amplifies the effects of tirzepatide on GSIS and islet cell viability. CONCLUSIONS: We succeeded to design and synthesize a novel morphinan derivative that is BBB-impermeable, glucose-lowering and islet cell-protective and has good drug safety despite its morphinan and imidazole structures.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Morfinanos , Ratones , Humanos , Animales , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Morfinanos/metabolismo , Morfinanos/farmacología , Islotes Pancreáticos/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Estrés Oxidativo
12.
Diabetes Care ; 45(4): 928-937, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35113139

RESUMEN

OBJECTIVE: Individuals with type 2 diabetes are at higher risk of progression of nonalcoholic fatty liver (steatosis) to steatohepatitis (NASH), fibrosis, and cirrhosis. The hepatic metabolism of obese individuals adapts by upregulation of mitochondrial capacity, which may be lost during the progression of steatosis. However, the role of type 2 diabetes with regard to hepatic mitochondrial function in NASH remains unclear. RESEARCH DESIGN AND METHODS: We therefore examined obese individuals with histologically proven NASH without (OBE) (n = 30; BMI 52 ± 9 kg/m2) or with type 2 diabetes (T2D) (n = 15; 51 ± 7 kg/m2) as well as healthy individuals without liver disease (CON) (n = 14; 25 ± 2 kg/m2). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamps with d-[6,6-2H2]glucose. Liver biopsies were used for assessing mitochondrial capacity by high-resolution respirometry and protein expression. RESULTS: T2D and OBE had comparable hepatic fat content, lobular inflammation, and fibrosis. Oxidative capacity in liver tissue normalized for citrate synthase activity was 59% greater in OBE than in CON, whereas T2D presented with 33% lower complex II-linked oxidative capacity than OBE and higher H2O2 production than CON. Interestingly, those with NASH and hepatic fibrosis score ≥1 had lower oxidative capacity and antioxidant defense than those without fibrosis. CONCLUSIONS: Loss of hepatic mitochondrial adaptation characterizes NASH and type 2 diabetes or hepatic fibrosis and may thereby favor accelerated disease progression.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Hígado/metabolismo , Cirrosis Hepática/complicaciones , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/complicaciones
13.
Metabolism ; 111S: 154299, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32569680

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) comprises fatty liver (steatosis), non-alcoholic steatohepatitis (NASH) and fibrosis/cirrhosis and may lead to end-stage liver failure or hepatocellular carcinoma. NAFLD is tightly associated with the most frequent metabolic disorders, such as obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM). Both multisystem diseases share several common mechanisms. Alterations of tissue communications include excessive lipid and later cytokine release by dysfunctional adipose tissue, intestinal dysbiosis and ectopic fat deposition in skeletal muscle. On the hepatocellular level, this leads to insulin resistance due to abnormal lipid handling and mitochondrial function. Over time, cellular oxidative stress and activation of inflammatory pathways, again supported by multiorgan crosstalk, determine NAFLD progression. Recent studies show that particularly the severe insulin resistant diabetes (SIRD) subgroup (cluster) associates with NAFLD and its accelerated progression and increases the risk of diabetes-related cardiovascular and kidney diseases, underpinning the critical role of insulin resistance. Consequently, lifestyle modification and certain drug classes used to treat T2DM have demonstrated effectiveness for treating NAFLD, but also some novel therapeutic concepts may be beneficial for both NAFLD and T2DM. This review addresses the bidirectional relationship between mechanisms underlying T2DM and NAFLD, the relevance of novel biomarkers for improving the diagnostic modalities and the identification of subgroups at specific risk of disease progression. Also, the role of metabolism-related drugs in NAFLD is discussed in light of the recent clinical trials. Finally, this review highlights some challenges to be addressed by future studies on NAFLD in the context of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Síndrome Metabólico/patología , Animales , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Progresión de la Enfermedad , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Síndrome Metabólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Riesgo
14.
Pathol Res Pract ; 216(8): 152980, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32703481

RESUMEN

AIMS: Unlike other Toll-like receptors (TLRs), the role of toll like receptor 2 (TLR-2) in the pathogenesis of chronic liver disease and hepatocellular carcinoma (HCC) is not well studied. We, therefore, set out to investigate the expression of TLR-2 in different chronic liver disease states along with other markers of cell death, cellular proliferation and tissue vascularisation METHODS AND RESULTS: Immunohistochemistry was performed on liver tissue microarrays comprising hepatitis, cirrhosis and HCC patient samples using antibodies against TLR-2, Ki-67, Caspase-3 and VEGF. This was done in order to characterise receptor expression and translocation, apoptosis, cell proliferation and vascularisation. Cytoplasmic TLR-2 expression was found to be weak in 5/8 normal liver cases, 10/19 hepatitis cases and 8/21 cirrhosis patients. Moderate to strong TLR-2 expression was observed in some cases of hepatitis and cirrhosis. Both, nuclear and cytoplasmic TLR-2 expression was present in HCC with weak intensity in 11/41 cases, and moderate to strong staining in 19/41 cases. Eleven HCC cases were TLR-2 negative. Surprisingly, both cytoplasmic and nuclear TLR-2 expression in HCC were found to significantly correlate with proliferative index (r = 0.24 and 0.37), Caspase-3 expression (r = 0.27 and 0.38) and vascularisation (r = 0.56 and 0.23). Further, nuclear TLR-2 localisation was predominant in HCC, whereas cytoplasmic expression was more prevalent in hepatitis and cirrhosis. Functionally, treatment of HUH7 HCC cells with a TLR-2 agonist induced the expression of cellular proliferation and vascularisation markers CD34 and VEGF. CONCLUSIONS: Our results demonstrate a positive correlation between the expression of TLR-2 and other markers of proliferation and vascularisation in HCC which suggests a possible role for TLR-2 in HCC pathogenesis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Receptor Toll-Like 2/metabolismo , Adulto , Carcinoma Hepatocelular/metabolismo , Caspasa 3/metabolismo , Proliferación Celular/fisiología , Femenino , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Persona de Mediana Edad , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología
15.
EBioMedicine ; 54: 102699, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32330875

RESUMEN

BACKGROUND: The extracellular signal-regulated kinase (ERK) pathway regulates cell growth, and is hyper-activated and associated with drug resistance in hepatocellular carcinoma (HCC). Metabolic pathways are profoundly dysregulated in HCC. Whether an altered metabolic state is linked to activated ERK pathway and drug response in HCC is unaddressed. METHODS: We deprived HCC cells of glutamine to induce metabolic alterations and performed various assays, including metabolomics (with 13C-glucose isotope tracing), microarray analysis, and cell proliferation assays. Glutamine-deprived cells were also treated with kinase inhibitors (e.g. Sorafenib, Erlotinib, U0126 amongst other MEK inhibitors). We performed bioinformatics analysis and stratification of HCC tumour microarrays to determine upregulated ERK gene signatures in patients. FINDINGS: In a subset of HCC cells, the withdrawal of glutamine triggers a severe metabolic alteration and ERK phosphorylation (pERK). This is accompanied by resistance to the anti-proliferative effect of kinase inhibitors, despite pERK inhibition. High intracellular serine is a consistent feature of an altered metabolic state and contributes to pERK induction and the kinase inhibitor resistance. Blocking the ERK pathway facilitates cell proliferation by reprogramming metabolism, notably enhancing aerobic glycolysis. We have identified 24 highly expressed ERK gene signatures that their combined expression strongly indicates a dysregulated metabolic gene network in human HCC tissues. INTERPRETATION: A severely compromised metabolism lead to ERK pathway induction, and primes some HCC cells to pro-survival phenotypes upon ERK pathway blockade. Our findings offer novel insights for understanding, predicting and overcoming drug resistance in liver cancer patients. FUND: DFG, BMBF and Sino-German Cooperation Project.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Resistencia a Antineoplásicos , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas , Antineoplásicos/toxicidad , Carcinoma Hepatocelular/genética , Proliferación Celular , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Metaboloma , Inhibidores de Proteínas Quinasas/toxicidad , Transcriptoma
16.
Cells ; 8(11)2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31718044

RESUMEN

Liver fibrosis is an advanced liver disease condition, which could progress to cirrhosis and hepatocellular carcinoma. To date, there is no direct approved antifibrotic therapy, and current treatment is mainly the removal of the causative factor. Transforming growth factor (TGF)-ß is a master profibrogenic cytokine and a promising target to treat fibrosis. However, TGF-ß has broad biological functions and its inhibition induces non-desirable side effects, which override therapeutic benefits. Therefore, understanding the pleiotropic effects of TGF-ß and its upstream and downstream regulatory mechanisms will help to design better TGF-ß based therapeutics. Here, we summarize recent discoveries and milestones on the TGF-ß signaling pathway related to liver fibrosis and hepatic stellate cell (HSC) activation, emphasizing research of the last five years. This comprises impact of TGF-ß on liver fibrogenesis related biological processes, such as senescence, metabolism, reactive oxygen species generation, epigenetics, circadian rhythm, epithelial mesenchymal transition, and endothelial-mesenchymal transition. We also describe the influence of the microenvironment on the response of HSC to TGF-ß. Finally, we discuss new approaches to target the TGF-ß pathway, name current clinical trials, and explain promises and drawbacks that deserve to be adequately addressed.


Asunto(s)
Susceptibilidad a Enfermedades , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Autofagia , Biomarcadores , Microambiente Celular , Senescencia Celular , Ritmo Circadiano , Metabolismo Energético , Epigénesis Genética , Regulación de la Expresión Génica , Humanos , Cirrosis Hepática/patología , Miofibroblastos/metabolismo , Estrés Oxidativo , Transducción de Señal
17.
PLoS One ; 12(7): e0182141, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28750085

RESUMEN

Fibrinogen, 1 of 13 coagulation factors responsible for normal blood clotting, is synthesized by hepatocytes. Detailed roles of the orphan nuclear receptors regulating fibrinogen gene expression have not yet been fully elucidated. Here, we identified estrogen-related receptor gamma (ERRγ) as a novel transcriptional regulator of human fibrinogen gene expression. Overexpression of ERRγ specially increased fibrinogen expression in human hepatoma cell line. Cannabinoid receptor types 1(CB1R) agonist arachidonyl-2'-chloroethylamide (ACEA) up-regulated transcription of fibrinogen via induction of ERRγ, whereas knockdown of ERRγ attenuated fibrinogen expression. Deletion analyses of the fibrinogen γ (FGG) gene promoter and ChIP assays revealed binding sites of ERRγ on human fibrinogen γ gene promoter. Moreover, overexpression of ERRγ was sufficient to increase fibrinogen gene expression, whereas treatment with GSK5182, a selective inverse agonist of ERRγ led to its attenuation in cell culture. Finally, fibrinogen and ERRγ gene expression were elevated in liver tissue of obese patients suggesting a conservation of this mechanism. Overall, this study elucidates a molecular mechanism linking CB1R signaling, ERRγ expression and fibrinogen gene transcription. GSK5182 may have therapeutic potential to treat hyperfibrinogenemia.


Asunto(s)
Fibrinógeno/genética , Regulación de la Expresión Génica , Receptores de Estrógenos/metabolismo , Adulto , Anciano , Animales , Fibrinógeno/metabolismo , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Hígado/metabolismo , Ratones , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/genética , Regiones Promotoras Genéticas/genética , Receptor Cannabinoide CB1/metabolismo , Transcripción Genética
18.
FEBS J ; 283(12): 2219-32, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26807763

RESUMEN

The transforming growth factor-beta (TGF-ß) family signalling pathways play essential roles in the regulation of different cellular processes, including proliferation, differentiation, migration or cell death, which are essential for the homeostasis of tissues and organs. Because of the diverse and pleiotropic TGF-ß functions, deregulation of its pathways contributes to human disease. In the case of the liver, TGF-ß signalling participates in all stages of disease progression, from initial liver injury through inflammation and fibrosis, to cirrhosis and cancer. TGF-ß has cytostatic and apoptotic effects in hepatocytes, promoting liver differentiation during embryogenesis and physiological liver regeneration. However, high levels of TGF-ß, as a consequence of chronic liver damage, result in activation of stellate cells to myofibroblasts and massive hepatocyte cell death, which contributes to the promotion of liver fibrosis and later cirrhosis. During liver tumorigenesis, TGF-ß may behave as a suppressor factor at early stages; however, there is strong evidence that overactivation of TGF-ß signalling might contribute to later tumour progression, once cells escape from its cytostatic effects. For these reasons, targeting the TGF-ß signalling pathway is being explored to counteract liver disease progression. In this review, we aim to shed light on the state-of-the-art in the signalling pathways induced by TGF-ß that are involved in different stages of liver physiology and pathology.


Asunto(s)
Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Factor de Crecimiento Transformador beta/genética , Carcinoma Hepatocelular/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Inflamación/genética , Inflamación/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Neoplasias Hepáticas/patología , Regeneración Hepática/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
19.
J Immunotoxicol ; 10(1): 9-16, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22793375

RESUMEN

Histamine, involved in many inflammatory reactions and immune responses, is reported to suppress--via H4R stimulation--injury concomitant with the late phase of warm hepatic ischemia/re-perfusion (I/R). The current study investigated the possible effects of histamine on the acute phase of hepatic I/R injury, and the possible underlying mechanisms like oxidative stress and release of inflammatory cytokines (e.g., tumor necrosis factor (TNF)-α nd interleukin [IL]-12). Rats were divided into naïve, sham-operated, and I/R groups. The I/R group was divided into sub-groups and pre-treated with histaminergic ligands before induction of ischemia. Anesthetized rats were subjected to warm ischemia for 30 min by occlusion of the portal vein and hepatic artery, then re-perfused for 90 min. Rats in the control I/R group showed significant increases in hepatic malondialdehyde (MDA), TNFα, and IL-12 contents, and in plasma alanine transaminase (ALT) and aspartate transaminase (AST) levels, along with significant decreases in hepatic reduced glutathione (GSH) content and marked diffuse histopathologic damage. Pre-treatment with histamine resulted in significant mitigation of each of these end-points. The protective effect of histamine was not antagonized by pre-treatment with mepyramine (H1R antagonist) or ranitidine (H2R antagonist) and completely reversed by pre-treatment with thioperamide (H3R and H4R antagonist). In addition, the histamine protective effect was mimicked by pre-treatment of rats with clozapine (H4R agonist). These observations strongly suggested that histamine has a protective effect against hepatic I/R-mediated tissue injury during the acute phase, and this effect was mediated through an H4R stimulation that led to a decrease in IL-12 and TNFα production--outcomes that consequently decreased localized oxidative stress and afforded hepatic protection in general.


Asunto(s)
Histamina/inmunología , Hígado/irrigación sanguínea , Daño por Reperfusión/inmunología , Alanina Transaminasa/metabolismo , Animales , Aspartato Aminotransferasas/metabolismo , Células Cultivadas , Citoprotección/efectos de los fármacos , Modelos Animales de Enfermedad , Antagonistas de los Receptores Histamínicos/farmacología , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-12/metabolismo , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Piperidinas/farmacología , Pirilamina/farmacología , Ranitidina/farmacología , Ratas , Ratas Endogámicas , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA