Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 207(2): 138-149, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35972987

RESUMEN

Rationale: High circulating galectin-3 is associated with poor outcomes in patients with coronavirus disease (COVID-19). We hypothesized that GB0139, a potent inhaled thiodigalactoside galectin-3 inhibitor with antiinflammatory and antifibrotic actions, would be safely and effectively delivered in COVID-19 pneumonitis. Objectives: Primary outcomes were safety and tolerability of inhaled GB0139 as an add-on therapy for patients hospitalized with COVID-19 pneumonitis. Methods: We present the findings of two arms of a phase Ib/IIa randomized controlled platform trial in hospitalized patients with confirmed COVID-19 pneumonitis. Patients received standard of care (SoC) or SoC plus 10 mg inhaled GB0139 twice daily for 48 hours, then once daily for up to 14 days or discharge. Measurements and Main Results: Data are reported from 41 patients, 20 of which were assigned randomly to receive GB0139. Primary outcomes: the GB0139 group experienced no treatment-related serious adverse events. Incidences of adverse events were similar between treatment arms (40 with GB0139 + SoC vs. 35 with SoC). Secondary outcomes: plasma GB0139 was measurable in all patients after inhaled exposure and demonstrated target engagement with decreased circulating galectin (overall treatment effect post-hoc analysis of covariance [ANCOVA] over days 2-7; P = 0.0099 vs. SoC). Plasma biomarkers associated with inflammation, fibrosis, coagulopathy, and major organ function were evaluated. Conclusions: In COVID-19 pneumonitis, inhaled GB0139 was well-tolerated and achieved clinically relevant plasma concentrations with target engagement. The data support larger clinical trials to determine clinical efficacy. Clinical trial registered with ClinicalTrials.gov (NCT04473053) and EudraCT (2020-002230-32).


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Galectina 3 , Inflamación , Resultado del Tratamiento
2.
BMC Infect Dis ; 23(1): 326, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189034

RESUMEN

BACKGROUND: In this phase 2 randomised placebo-controlled clinical trial in patients with COVID-19, we hypothesised that blocking mineralocorticoid receptors using a combination of dexamethasone to suppress cortisol secretion and spironolactone is safe and may reduce illness severity. METHODS: Hospitalised patients with confirmed COVID-19 were randomly allocated to low dose oral spironolactone (50 mg day 1, then 25 mg once daily for 21 days) or standard of care in a 2:1 ratio. Both groups received dexamethasone 6 mg daily for 10 days. Group allocation was blinded to the patient and research team. Primary outcomes were time to recovery, defined as the number of days until patients achieved WHO Ordinal Scale (OS) category ≤ 3, and the effect of spironolactone on aldosterone, D-dimer, angiotensin II and Von Willebrand Factor (VWF). RESULTS: One hundred twenty patients with PCR confirmed COVID were recruited in Delhi from 01 February to 30 April 2021. 74 were randomly assigned to spironolactone and dexamethasone (SpiroDex), and 46 to dexamethasone alone (Dex). There was no significant difference in the time to recovery between SpiroDex and Dex groups (SpiroDex median 4.5 days, Dex median 5.5 days, p = 0.055). SpiroDex patients had significantly lower D-dimer levels on days 4 and 7 (day 7 mean D-dimer: SpiroDex 1.15 µg/mL, Dex 3.15 µg/mL, p = 0.0004) and aldosterone at day 7 (SpiroDex 6.8 ng/dL, Dex 14.52 ng/dL, p = 0.0075). There was no difference in VWF or angiotensin II levels between groups. For secondary outcomes, SpiroDex patients had a significantly greater number of oxygen free days and reached oxygen freedom sooner than the Dex group. Cough scores were no different during the acute illness, however the SpiroDex group had lower scores at day 28. There was no difference in corticosteroid levels between groups. There was no increase in adverse events in patients receiving SpiroDex. CONCLUSION: Low dose oral spironolactone in addition to dexamethasone was safe and reduced D-dimer and aldosterone. Time to recovery was not significantly reduced. Phase 3 randomised controlled trials with spironolactone and dexamethasone should be considered. TRIAL REGISTRATION: The trial was registered on the Clinical Trials Registry of India TRI: CTRI/2021/03/031721, reference: REF/2021/03/041472. Registered on 04/03/2021.


Asunto(s)
COVID-19 , Humanos , Espironolactona/efectos adversos , SARS-CoV-2 , Aldosterona , Angiotensina II , Factor de von Willebrand , Tratamiento Farmacológico de COVID-19 , Dexametasona/efectos adversos , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Am J Respir Cell Mol Biol ; 66(2): 196-205, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34710339

RESUMEN

Immunopathology occurs in the lung and spleen in fatal coronavirus disease (COVID-19), involving monocytes/macrophages and plasma cells. Antiinflammatory therapy reduces mortality, but additional therapeutic targets are required. We aimed to gain mechanistic insight into COVID-19 immunopathology by targeted proteomic analysis of pulmonary and splenic tissues. Lung parenchymal and splenic tissue was obtained from 13 postmortem examinations of patients with fatal COVID-19. Control tissue was obtained from cancer resection samples (lung) and deceased organ donors (spleen). Protein was extracted from tissue by phenol extraction. Olink multiplex immunoassay panels were used for protein detection and quantification. Proteins with increased abundance in the lung included MCP-3, antiviral TRIM21, and prothrombotic TYMP. OSM and EN-RAGE/S100A12 abundance was correlated and associated with inflammation severity. Unsupervised clustering identified "early viral" and "late inflammatory" clusters with distinct protein abundance profiles, and differences in illness duration before death and presence of viral RNA. In the spleen, lymphocyte chemotactic factors and CD8A were decreased in abundance, and proapoptotic factors were increased. B-cell receptor signaling pathway components and macrophage colony stimulating factor (CSF-1) were also increased. Additional evidence for a subset of host factors (including DDX58, OSM, TYMP, IL-18, MCP-3, and CSF-1) was provided by overlap between 1) differential abundance in spleen and lung tissue; 2) meta-analysis of existing datasets; and 3) plasma proteomic data. This proteomic analysis of lung parenchymal and splenic tissue from fatal COVID-19 provides mechanistic insight into tissue antiviral responses, inflammation and disease stages, macrophage involvement, pulmonary thrombosis, splenic B-cell activation, and lymphocyte depletion.


Asunto(s)
COVID-19/inmunología , Regulación de la Expresión Génica/inmunología , Pulmón/inmunología , SARS-CoV-2/inmunología , Bazo/inmunología , Anciano , Anciano de 80 o más Años , Autopsia , Femenino , Humanos , Inflamación/inmunología , Masculino , Proteómica
4.
Am J Respir Crit Care Med ; 203(2): 192-201, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33217246

RESUMEN

Rationale: In life-threatening coronavirus disease (COVID-19), corticosteroids reduce mortality, suggesting that immune responses have a causal role in death. Whether this deleterious inflammation is primarily a direct reaction to the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or an independent immunopathologic process is unknown.Objectives: To determine SARS-CoV-2 organotropism and organ-specific inflammatory responses and the relationships among viral presence, inflammation, and organ injury.Methods: Tissue was acquired from 11 detailed postmortem examinations. SARS-CoV-2 organotropism was mapped by using multiplex PCR and sequencing, with cellular resolution achieved by in situ viral S (spike) protein detection. Histologic evidence of inflammation was quantified from 37 anatomic sites, and the pulmonary immune response was characterized by using multiplex immunofluorescence.Measurements and Main Results: Multiple aberrant immune responses in fatal COVID-19 were found, principally involving the lung and reticuloendothelial system, and these were not clearly topologically associated with the virus. Inflammation and organ dysfunction did not map to the tissue and cellular distribution of SARS-CoV-2 RNA and protein between or within tissues. An arteritis was identified in the lung, which was further characterized as a monocyte/myeloid-rich vasculitis, and occurred together with an influx of macrophage/monocyte-lineage cells into the pulmonary parenchyma. In addition, stereotyped abnormal reticuloendothelial responses, including excessive reactive plasmacytosis and iron-laden macrophages, were present and dissociated from viral presence in lymphoid tissues.Conclusions: Tissue-specific immunopathology occurs in COVID-19, implicating a significant component of the immune-mediated, virus-independent immunopathologic process as a primary mechanism in severe disease. Our data highlight novel immunopathologic mechanisms and validate ongoing and future efforts to therapeutically target aberrant macrophage and plasma-cell responses as well as promote pathogen tolerance in COVID-19.


Asunto(s)
COVID-19/inmunología , Inflamación/virología , Pulmón/inmunología , Insuficiencia Multiorgánica/virología , SARS-CoV-2/inmunología , Anciano , Anciano de 80 o más Años , Autopsia , Biopsia , COVID-19/patología , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Inflamación/inmunología , Inflamación/patología , Pulmón/patología , Pulmón/virología , Masculino , Insuficiencia Multiorgánica/inmunología , Insuficiencia Multiorgánica/patología , SARS-CoV-2/patogenicidad , Índice de Severidad de la Enfermedad
5.
Eur Respir J ; 57(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33060152

RESUMEN

Solitary pulmonary nodules (SPNs) are a clinical challenge, given there is no single clinical sign or radiological feature that definitively identifies a benign from a malignant SPN. The early detection of lung cancer has a huge impact on survival outcome. Consequently, there is great interest in the prompt diagnosis, and treatment of malignant SPNs. Current diagnostic pathways involve endobronchial/transthoracic tissue biopsies or radiological surveillance, which can be associated with suboptimal diagnostic yield, healthcare costs and patient anxiety. Cutting-edge technologies are needed to disrupt and improve, existing care pathways. Optical fibre-based techniques, which can be delivered via the working channel of a bronchoscope or via transthoracic needle, may deliver advanced diagnostic capabilities in patients with SPNs. Optical endomicroscopy, an autofluorescence-based imaging technique, demonstrates abnormal alveolar structure in SPNs in vivo Alternative optical fingerprinting approaches, such as time-resolved fluorescence spectroscopy and fluorescence-lifetime imaging microscopy, have shown promise in discriminating lung cancer from surrounding healthy tissue. Whilst fibre-based Raman spectroscopy has enabled real-time characterisation of SPNs in vivo Fibre-based technologies have the potential to enable in situ characterisation and real-time microscopic imaging of SPNs, which could aid immediate treatment decisions in patients with SPNs. This review discusses advances in current imaging modalities for evaluating SPNs, including computed tomography (CT) and positron emission tomography-CT. It explores the emergence of optical fibre-based technologies, and discusses their potential role in patients with SPNs and suspected lung cancer.


Asunto(s)
Neoplasias Pulmonares , Nódulo Pulmonar Solitario , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Fibras Ópticas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Nódulo Pulmonar Solitario/diagnóstico por imagen , Tomografía Computarizada por Rayos X
6.
Opt Express ; 29(13): 20765-20775, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34266158

RESUMEN

We demonstrate the use of ultrafast laser pulses to precisely ablate the side of polymer multicore optical fibres (MCF) in such a way that light is efficiently coupled out of a set of MCF cores to free space. By individually exciting sets of MCF cores, this flexible "micro-window" technology allows the controllable generation of light sources at multiple independently selectable locations along the MCF. We found that the maximum fraction of light that could be side coupled from the MCF varied between 55% and 73%.

7.
Eur J Nucl Med Mol Imaging ; 48(3): 800-807, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32915268

RESUMEN

PURPOSE: The relentless rise in antimicrobial resistance is a major societal challenge and requires, as part of its solution, a better understanding of bacterial colonization and infection. To facilitate this, we developed a highly efficient no-wash red optical molecular imaging agent that enables the rapid, selective, and specific visualization of Gram-positive bacteria through a bespoke optical fiber-based delivery/imaging endoscopic device. METHODS: We rationally designed a no-wash, red, Gram-positive-specific molecular imaging agent (Merocy-Van) based on vancomycin and an environmental merocyanine dye. We demonstrated the specificity and utility of the imaging agent in escalating in vitro and ex vivo whole human lung models (n = 3), utilizing a bespoke fiber-based delivery and imaging device, coupled to a wide-field, two-color endomicroscopy system. RESULTS: The imaging agent (Merocy-Van) was specific to Gram-positive bacteria and enabled no-wash imaging of S. aureus within the alveolar space of whole ex vivo human lungs within 60 s of delivery into the field-of-view, using the novel imaging/delivery endomicroscopy device. CONCLUSION: This platform enables the rapid and specific detection of Gram-positive bacteria in the human lung.


Asunto(s)
Fibras Ópticas , Staphylococcus aureus , Endoscopios , Bacterias Grampositivas , Humanos , Pulmón/diagnóstico por imagen
8.
Br J Clin Pharmacol ; 87(8): 3206-3217, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33432705

RESUMEN

AIMS: Patients on antituberculosis (anti-TB) therapy are at risk of drug-induced liver injury (DILI). MicroRNA-122 (miR-122) and cytokeratin-18 (K18) are DILI biomarkers. To explore their utility in this global context, circulating miR-122 and K18 were measured in UK and Ugandan populations on anti-TB therapy for mycobacterial infection. METHODS: Healthy subjects and patients receiving anti-TB therapy were recruited at the Royal Infirmary of Edinburgh, UK (ALISTER-ClinicalTrials.gov Identifier: NCT03211208). African patients with human immunodeficiency virus-TB coinfection were recruited at the Infectious Diseases Institute, Kampala, Uganda (SAEFRIF-NCT03982277). Serial blood samples, demographic and clinical data were collected. In ALISTER samples, MiR-122 was quantified using polymerase chain reaction. In ALISTER and SAEFRIF samples, K18 was quantified by enzyme-linked immunosorbent assay. RESULTS: The study had 235 participants (healthy volunteers [n = 28]; ALISTER: active TB [n = 30], latent TB [n = 88], nontuberculous mycobacterial infection [n = 25]; SAEFRIF: human immunodeficiency virus-TB coinfection [n = 64]). In the absence of DILI, there was no difference in miR-122 and K18 across the groups. Both miR-122 and K18 correlated with alanine transaminase (ALT) activity (miR-122: R = .52, 95%CI = 0.42-0.61, P < .0001. K18: R =0.42, 95%CI = 0.34-0.49, P < .0001). miR-122 distinguished those patients with ALT>50 U/L with higher sensitivity/specificity than K18. There were 2 DILI cases: baseline ALT, 18 and 28 IU/L, peak ALT 431 and 194 IU/L; baseline K18, 58 and 219 U/L, peak K18 1247 and 3490 U/L; baseline miR-122 4 and 17 fM, peak miR-122 60 and 336 fM, respectively. CONCLUSION: In patients treated with anti-TB therapy, miR-122 and K18 correlated with ALT and increased with DILI. Further work should determine their diagnostic and prognostic utility in this global context-of-use.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , MicroARNs , Biomarcadores , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Humanos , Queratina-18 , Uganda/epidemiología
9.
BMC Pulm Med ; 21(1): 196, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107929

RESUMEN

BACKGROUND: Ventilator-associated pneumonia (VAP) is an important diagnosis in critical care. VAP research is complicated by the lack of agreed diagnostic criteria and reference standard test criteria. Our aim was to review which reference standard tests are used to evaluate novel index tests for suspected VAP. METHODS: We conducted a comprehensive search using electronic databases and hand reference checks. The Cochrane Library, MEDLINE, CINHAL, EMBASE, and web of science were searched from 2008 until November 2018. All terms related to VAP diagnostics in the intensive treatment unit were used to conduct the search. We adopted a checklist from the critical appraisal skills programme checklist for diagnostic studies to assess the quality of the included studies. RESULTS: We identified 2441 records, of which 178 were selected for full-text review. Following methodological examination and quality assessment, 44 studies were included in narrative data synthesis. Thirty-two (72.7%) studies utilised a sole microbiological reference standard; the remaining 12 studies utilised a composite reference standard, nine of which included a mandatory microbiological criterion. Histopathological criteria were optional in four studies but mandatory in none. CONCLUSIONS: Nearly all reference standards for VAP used in diagnostic test research required some microbiological confirmation of infection, with BAL culture being the most common reference standard used.


Asunto(s)
Cuidados Críticos/métodos , Neumonía Asociada al Ventilador/diagnóstico , Cuidados Críticos/normas , Humanos , Respiración Artificial/efectos adversos
10.
Opt Lett ; 45(23): 6490-6493, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33258850

RESUMEN

Coherent fiber bundles are used widely for imaging. Commonly, disordered arrays of randomly sized fiber cores avoid proximity between like-cores, which would otherwise result in increased core crosstalk and a negative impact on imaging. Recently, stack-and-draw fiber manufacture techniques have been used to produce fibers with a controlled core layout to minimize core crosstalk. However, one must take manufacturing considerations into account during stack-and-draw fiber design in order to avoid impractical or unachievable fabrication. This comes with a set of practical compromises, such as using only a small number of different core sizes. Through characterization of core crosstalk patterns, this Letter aims to aid the understanding of crosstalk limitations imposed by such compromises in the core layout made for ease of fabrication.

11.
Crit Care Med ; 46(9): e937-e944, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29957711

RESUMEN

OBJECTIVES: Mild traumatic brain injury in the form of concussion is extremely common, and the potential effects on pulmonary priming have been underestimated. The aim of this study was to characterize the pulmonary response following mild traumatic brain injury and assess the pulmonary susceptibility to lung injury after a subsequent innocuous pulmonary insult. DESIGN: Experimental in vivo study. SETTING: University research laboratory. SUBJECTS: Male CD1 mice. INTERVENTIONS: We developed a model of concussive traumatic brain injury in mice followed by pulmonary acid microaspiration. To assess the dependent role of neutrophils in mediating pulmonary injury, we specifically depleted neutrophils. MEASUREMENTS AND MAIN RESULTS: Lateral fluid percussion to the brain resulted in neuronal damage and neutrophil infiltration as well as extensive pulmonary interstitial neutrophil accumulation but no alveolar injury. Following subsequent innocuous acid microaspiration, augmented alveolar neutrophil influx led to the development of pulmonary hemorrhage that was reduced following neutrophil depletion. CONCLUSIONS: This model shows for the first time that innocuous acid microaspiration is sufficient to induce neutrophil-mediated lung injury following mild concussion and that the extracranial effects of mild traumatic brain injury have been underestimated.


Asunto(s)
Conmoción Encefálica/complicaciones , Lesión Pulmonar/etiología , Infiltración Neutrófila , Animales , Pulmón/inmunología , Pulmón/patología , Masculino , Ratones
12.
Org Biomol Chem ; 16(43): 8056-8063, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30175355

RESUMEN

Optical biosensing based on the activation of fluorescent reporters offers a powerful methodology for the real-time molecular interrogation of pathology. Here we report a first-in-class, bimodal fluorescent reporter strategy for the simultaneous and highly specific detection of two independent proteases (thrombin and matrix metalloproteases (MMPs)) pivotal in the fibroproliferative process surrounding lung cancer, based on a dual, multiplexing, peptide FRET system. This sophisticated synthetic smartprobe, with a molecular weight of 6 kDa, contains two independent fluorophores and quenchers that generate photonic signatures at two specific wavelengths upon activation by target enzymes within human lung cancer tissue.


Asunto(s)
Técnicas Biosensibles/métodos , Neoplasias Pulmonares/metabolismo , Proteolisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Humanos , Neoplasias Pulmonares/patología , Metaloproteinasas de la Matriz/metabolismo , Neutrófilos/metabolismo , Placa Aterosclerótica/metabolismo
13.
Bioorg Med Chem ; 26(10): 2816-2826, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29042225

RESUMEN

Optical medical imaging is a rapidly growing area of research and development that offers a multitude of healthcare solutions both diagnostically and therapeutically. In this review, some of the most recently described peptide-based optical probes are reviewed with a special emphasis on their in vivo use and potential application in a clinical setting.


Asunto(s)
Colorantes Fluorescentes/química , Imagen Óptica/métodos , Péptidos/química , Marcadores de Afinidad/química , Animales , Humanos , Microscopía Fluorescente/métodos
14.
Thorax ; 72(10): 928-936, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28469031

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) is an often fatal neutrophil-dominant lung disease. Although influenced by multiple proinflammatory mediators, identification of suitable therapeutic candidates remains elusive. We aimed to delineate the presence of mitochondrial formylated peptides in ARDS and characterise the functional importance of formyl peptide receptor 1 (FPR1) signalling in sterile lung inflammation. METHODS: Mitochondrial formylated peptides were identified in bronchoalveolar lavage fluid (BALF) and serum of patients with ARDS by liquid chromatography-tandem mass spectrometry. In vitro, human neutrophils were stimulated with mitochondrial formylated peptides and their effects assessed by flow cytometry and chemotaxis assay. Mouse lung injury was induced by mitochondrial formylated peptides or hydrochloric acid. Bone marrow chimeras determined the contribution of myeloid and parenchymal FPR1 to sterile lung inflammation. RESULTS: Mitochondrial formylated peptides were elevated in BALF and serum from patients with ARDS. These peptides drove neutrophil activation and chemotaxis through FPR1-dependent mechanisms in vitro and in vivo. In mouse lung injury, inflammation was attenuated in Fpr1-/- mice, effects recapitulated by a pharmacological FPR1 antagonist even when administered after the onset of injury. FPR1 expression was present in alveolar epithelium and chimeric mice demonstrated that both myeloid and parenchymal FPR1 contributed to lung inflammation. CONCLUSIONS: We provide the first definitive evidence of mitochondrial formylated peptides in human disease and demonstrate them to be elevated in ARDS and important in a mouse model of lung injury. This work reveals mitochondrial formylated peptide FPR1 signalling as a key driver of sterile acute lung injury and a potential therapeutic target in ARDS.


Asunto(s)
Receptores de Formil Péptido/inmunología , Síndrome de Dificultad Respiratoria/inmunología , Animales , Líquido del Lavado Bronquioalveolar/química , Quimiotaxis de Leucocito/inmunología , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Citometría de Flujo , Humanos , Ratones , Mitocondrias/inmunología , Activación Neutrófila/inmunología , Neutrófilos/inmunología , Espectrometría de Masas en Tándem
15.
Opt Express ; 25(10): 11932-11953, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28788750

RESUMEN

Recent developments in optical endomicroscopy (OEM) and associated fluorescent SmartProbes present a need for sensitive imaging with high detection performance. Inter-core coupling within coherent fiber bundles is a well recognized limitation, affecting the technology's imaging capabilities. Fiber cross coupling has been studied both experimentally and within a theoretical framework (coupled mode theory), providing (i) insights on the factors affecting cross talk, and (ii) recommendations for optimal fiber bundle design. However, due to physical limitations, such as the tradeoff between cross coupling and core density, cross coupling can be suppressed yet not eliminated through optimal fiber design. This study introduces a novel approach for measuring, analyzing and quantifying cross coupling within coherent fiber bundles, in a format that can be integrated into a linear model, which in turn can enable computational compensation of the associated blurring introduced to OEM images.

16.
Org Biomol Chem ; 15(20): 4344-4350, 2017 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-28474722

RESUMEN

A library of FRET-based peptides were prepared and studied as Thrombin substrates. This identified probes that showed selective activation by Thrombin, low fluorescent background signals, stability to Factor Xa, matrix metalloproteases, and primary human inflammatory cell lysates and supernatant. These were selected for further optimization, creating a second generation of fluorogenic probes with improved solubility and Plasmin resistance. The optimised probe allowed the detection of Thrombin activity in ex vivo fibrotic human tissue.


Asunto(s)
Colorantes Fluorescentes/química , Pulmón/química , Péptidos/química , Fibrosis Pulmonar/diagnóstico por imagen , Trombina/análisis , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/síntesis química , Humanos , Péptidos/síntesis química , Fibrosis Pulmonar/metabolismo , Trombina/metabolismo
18.
Am J Pathol ; 185(5): 1172-84, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25791526

RESUMEN

Neutrophil migration to sites of inflammation and the subsequent execution of multiple functions are designed to contain and kill invading pathogens. These highly regulated and orchestrated processes are controlled by interactions between numerous receptors and their cognate ligands. Unraveling and identifying those that are central to inflammatory processes may represent novel therapeutic targets for the treatment of neutrophil-dominant inflammatory disorders in which dysregulated neutrophil recruitment, function, and elimination serve to potentiate rather than resolve an initial inflammatory insult. The first G protein-coupled receptor to be described on human neutrophils, formyl peptide receptor 1 (FPR1), is one such receptor that plays a significant role in the execution of these functions through multiple intracellular signaling pathways. Recent work has highlighted important observations with regard to both receptor function and the importance and functional relevance of FPR1 in the pathogenesis of a range of both sterile and infective inflammatory conditions. In this review, we explore the multiple components of neutrophil migration and function in both health and disease, with a focus on the role of FPR1 in these processes. The current understanding of FPR1 structure, function, and signaling is examined, alongside discussion of the potential importance of FPR1 in inflammatory diseases suggesting that FPR1 is a key regulator of the inflammatory environment.


Asunto(s)
Inflamación/inmunología , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Receptores de Formil Péptido/inmunología , Animales , Quimiotaxis de Leucocito/inmunología , Humanos , Activación Neutrófila/inmunología
19.
Am J Respir Crit Care Med ; 188(4): 449-55, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23627345

RESUMEN

RATIONALE: Depletion of monocytes reduces LPS-induced lung inflammation in mice, suggesting monocytes as potential therapeutic targets in acute lung injury. OBJECTIVES: To investigate whether depletion of circulating blood monocytes has beneficial effects on markers of systemic and pulmonary inflammation in a human model of acute lung inflammation. METHODS: A total of 30 healthy volunteers were enrolled in a randomized controlled trial. Volunteers inhaled LPS at baseline, and were randomized to receive active mononuclear cell depletion by leukapheresis, or sham leukapheresis, in a double-blind fashion (15 volunteers per group). Serial blood counts were measured, bronchoalveolar lavage (BAL) was performed at 9 hours, and [(18)F]fluorodeoxyglucose positron emission tomography at 24 hours. The primary endpoint was the increment in circulating neutrophils at 8 hours. MEASUREMENTS AND MAIN RESULTS: As expected, inhalation of LPS induced neutrophilia and an up-regulation of inflammatory mediators in the blood and lungs of all volunteers. There was no significant difference between the depletion and sham groups in the mean increment in blood neutrophil count at 8 hours (6.16 × 10(9)/L and 6.15 × 10(9)/L, respectively; P = 1.00). Furthermore, there were no significant differences in BAL neutrophils or protein, positron emission tomography-derived measures of global lung inflammation, or cytokine levels in plasma or BAL supernatant between the study groups. No serious adverse events occurred, and no symptoms were significantly different between the groups. CONCLUSIONS: These findings do not support a role for circulating human monocytes in the early recruitment of neutrophils during LPS-mediated acute lung inflammation in humans.


Asunto(s)
Mediadores de Inflamación/fisiología , Leucaféresis , Adolescente , Adulto , Lavado Broncoalveolar , Citocinas/sangre , Método Doble Ciego , Humanos , Leucocitos Mononucleares , Masculino , Regulación hacia Arriba/fisiología , Adulto Joven
20.
IEEE Trans Image Process ; 33: 1241-1256, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38324436

RESUMEN

Pneumonia, a respiratory disease often caused by bacterial infection in the distal lung, requires rapid and accurate identification, especially in settings such as critical care. Initiating or de-escalating antimicrobials should ideally be guided by the quantification of pathogenic bacteria for effective treatment. Optical endomicroscopy is an emerging technology with the potential to expedite bacterial detection in the distal lung by enabling in vivo and in situ optical tissue characterisation. With advancements in detector technology, optical endomicroscopy can utilize fluorescence lifetime imaging (FLIM) to help detect events that were previously challenging or impossible to identify using fluorescence intensity imaging. In this paper, we propose an iterative Bayesian approach for bacterial detection in FLIM. We model the FLIM image as a linear combination of background intensity, Gaussian noise, and additive outliers (labelled bacteria). While previous bacteria detection methods model anomalous pixels as bacteria, here the FLIM outliers are modelled as circularly symmetric Gaussian-shaped objects, based on their discrete shape observed through visual analysis and the physical nature of the imaging modality. A Hierarchical Bayesian model is used to solve the bacterial detection problem where prior distributions are assigned to unknown parameters. A Metropolis-Hastings within Gibbs sampler draws samples from the posterior distribution. The proposed method's detection performance is initially measured using synthetic images, and shows significant improvement over existing approaches. Further analysis is conducted on real optical endomicroscopy FLIM images annotated by trained personnel. The experiments show the proposed approach outperforms existing methods by a margin of +16.85% ( F1 ) for detection accuracy.


Asunto(s)
Bacterias , Pulmón , Microscopía Fluorescente/métodos , Teorema de Bayes , Pulmón/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA