Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 22(4): e3002607, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38687811

RESUMEN

Unbiased data-driven omic approaches are revealing the molecular heterogeneity of Alzheimer disease. Here, we used machine learning approaches to integrate high-throughput transcriptomic, proteomic, metabolomic, and lipidomic profiles with clinical and neuropathological data from multiple human AD cohorts. We discovered 4 unique multimodal molecular profiles, one of them showing signs of poor cognitive function, a faster pace of disease progression, shorter survival with the disease, severe neurodegeneration and astrogliosis, and reduced levels of metabolomic profiles. We found this molecular profile to be present in multiple affected cortical regions associated with higher Braak tau scores and significant dysregulation of synapse-related genes, endocytosis, phagosome, and mTOR signaling pathways altered in AD early and late stages. AD cross-omics data integration with transcriptomic data from an SNCA mouse model revealed an overlapping signature. Furthermore, we leveraged single-nuclei RNA-seq data to identify distinct cell-types that most likely mediate molecular profiles. Lastly, we identified that the multimodal clusters uncovered cerebrospinal fluid biomarkers poised to monitor AD progression and possibly cognition. Our cross-omics analyses provide novel critical molecular insights into AD.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Humanos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Ratones , Transcriptoma/genética , Proteómica/métodos , Masculino , Biomarcadores/metabolismo , Metabolómica/métodos , Aprendizaje Automático , Femenino , Progresión de la Enfermedad , Anciano , Modelos Animales de Enfermedad , Multiómica
2.
Bioinformatics ; 40(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38426351

RESUMEN

MOTIVATION: MetaCerberus is a massively parallel, fast, low memory, scalable annotation tool for inference gene function across genomes to metacommunities. MetaCerberus provides an elusive HMM/HMMER-based tool at a rapid scale with low memory. It offers scalable gene elucidation to major public databases, including KEGG (KO), COGs, CAZy, FOAM, and specific databases for viruses, including VOGs and PHROGs, from single genomes to metacommunities. RESULTS: MetaCerberus is 1.3× as fast on a single node than eggNOG-mapper v2 on 5× less memory using an exclusively HMM/HMMER mode. In a direct comparison, MetaCerberus provides better annotation of viruses, phages, and archaeal viruses than DRAM, Prokka, or InterProScan. MetaCerberus annotates more KOs across domains when compared to DRAM, with a 186× smaller database, and with 63× less memory. MetaCerberus is fully integrated for automatic analysis of statistics and pathways using differential statistic tools (i.e. DESeq2 and edgeR), pathway enrichment (GAGE R), and pathview R. MetaCerberus provides a novel tool for unlocking the biosphere across the tree of life at scale. AVAILABILITY AND IMPLEMENTATION: MetaCerberus is written in Python and distributed under a BSD-3 license. The source code of MetaCerberus is freely available at https://github.com/raw-lab/metacerberus compatible with Python 3 and works on both Mac OS X and Linux. MetaCerberus can also be easily installed using bioconda: mamba create -n metacerberus -c bioconda -c conda-forge metacerberus.


Asunto(s)
Genoma , Programas Informáticos , Bases de Datos Factuales
3.
BMC Bioinformatics ; 22(1): 25, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461494

RESUMEN

BACKGROUND: Diverse microbiome communities drive biogeochemical processes and evolution of animals in their ecosystems. Many microbiome projects have demonstrated the power of using metagenomics to understand the structures and factors influencing the function of the microbiomes in their environments. In order to characterize the effects from microbiome composition for human health, diseases, and even ecosystems, one must first understand the relationship of microbes and their environment in different samples. Running machine learning model with metagenomic sequencing data is encouraged for this purpose, but it is not an easy task to make an appropriate machine learning model for all diverse metagenomic datasets. RESULTS: We introduce MegaR, an R Shiny package and web application, to build an unbiased machine learning model effortlessly with interactive visual analysis. The MegaR employs taxonomic profiles from either whole metagenome sequencing or 16S rRNA sequencing data to develop machine learning models and classify the samples into two or more categories. It provides various options for model fine tuning throughout the analysis pipeline such as data processing, multiple machine learning techniques, model validation, and unknown sample prediction that can be used to achieve the highest prediction accuracy possible for any given dataset while still maintaining a user-friendly experience. CONCLUSIONS: Metagenomic sample classification and phenotype prediction is important particularly when it applies to a diagnostic method for identifying and predicting microbe-related human diseases. MegaR provides various interactive visualizations for user to build an accurate machine-learning model without difficulty. Unknown sample prediction with a properly trained model using MegaR will enhance researchers to identify the sample property in a fast turnaround time.


Asunto(s)
Aprendizaje Automático , Metagenoma , Metagenómica , Humanos , Fenotipo , ARN Ribosómico 16S/genética
4.
Biol Direct ; 14(1): 12, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31370905

RESUMEN

BACKGROUND: Metagenomics is the application of modern genomic techniques to investigate the members of a microbial community directly in their natural environments and is widely used in many studies to survey the communities of microbial organisms that live in diverse ecosystems. In order to understand the metagenomic profile of one of the densest interaction spaces for millions of people, the public transit system, the MetaSUB international Consortium has collected and sequenced metagenomes from subways of different cities across the world. In collaboration with CAMDA, MetaSUB has made the metagenomic samples from these cities available for an open challenge of data analysis including, but not limited in scope to, the identification of unknown samples. RESULTS: To distinguish the metagenomic profiling among different cities and also predict unknown samples precisely based on the profiling, two different approaches are proposed using machine learning techniques; one is a read-based taxonomy profiling of each sample and prediction method, and the other is a reduced representation assembly-based method. Among various machine learning techniques tested, the random forest technique showed promising results as a suitable classifier for both approaches. Random forest models developed from read-based taxonomic profiling could achieve an accuracy of 91% with 95% confidence interval between 80 and 93%. The assembly-based random forest model prediction also reached 90% accuracy. However, both models achieved roughly the same accuracy on the testing test, whereby they both failed to predict the most abundant label. CONCLUSION: Our results suggest that both read-based and assembly-based approaches are powerful tools for the analysis of metagenomics data. Moreover, our results suggest that reduced representation assembly-based methods are able to simultaneous provide high-accuracy prediction on available data. Overall, we show that metagenomic samples can be traced back to their location with careful generation of features from the composition of microbes and utilizing existing machine learning algorithms. Proposed approaches show high accuracy of prediction, but require careful inspection before making any decisions due to sample noise or complexity. REVIEWERS: This article was reviewed by Eugene V. Koonin, Jing Zhou and Serghei Mangul.


Asunto(s)
Análisis de Datos , Aprendizaje Automático , Metagenoma , Metagenómica/métodos , Microbiota/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA