Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Med Genet ; 60(2): 163-173, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35256403

RESUMEN

BACKGROUND: Postzygotic activating PIK3CA variants cause several phenotypes within the PIK3CA-related overgrowth spectrum (PROS). Variant strength, mosaicism level, specific tissue involvement and overlapping disorders are responsible for disease heterogeneity. We explored these factors in 150 novel patients and in an expanded cohort of 1007 PIK3CA-mutated patients, analysing our new data with previous literature to give a comprehensive picture. METHODS: We performed ultradeep targeted next-generation sequencing (NGS) on DNA from skin biopsy, buccal swab or blood using a panel including phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway genes and GNAQ, GNA11, RASA1 and TEK. Additionally, 914 patients previously reported were systematically reviewed. RESULTS: 93 of our 150 patients had PIK3CA pathogenetic variants. The merged PROS cohort showed that PIK3CA variants span thorough all gene domains, some were exclusively associated with specific PROS phenotypes: weakly activating variants were associated with central nervous system (CNS) involvement, and strongly activating variants with extra-CNS phenotypes. Among the 57 with a wild-type PIK3CA allele, 11 patients with overgrowth and vascular malformations overlapping PROS had variants in GNAQ, GNA11, RASA1 or TEK. CONCLUSION: We confirm that (1) molecular diagnostic yield increases when multiple tissues are tested and by enriching NGS panels with genes of overlapping 'vascular' phenotypes; (2) strongly activating PIK3CA variants are found in affected tissue, rarely in blood: conversely, weakly activating mutations more common in blood; (3) weakly activating variants correlate with CNS involvement, strong variants are more common in cases without; (4) patients with vascular malformations overlapping those of PROS can harbour variants in genes other than PIK3CA.


Asunto(s)
Malformaciones Vasculares , Humanos , Mutación/genética , Fenotipo , Genotipo , Fosfatidilinositol 3-Quinasa Clase I/genética , Malformaciones Vasculares/diagnóstico , Malformaciones Vasculares/genética , Proteína Activadora de GTPasa p120/genética
2.
Genet Med ; 24(1): 51-60, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906459

RESUMEN

PURPOSE: Chromatinopathies include more than 50 disorders caused by disease-causing variants of various components of chromatin structure and function. Many of these disorders exhibit unique genome-wide DNA methylation profiles, known as episignatures. In this study, the methylation profile of a large cohort of individuals with chromatinopathies was analyzed for episignature detection. METHODS: DNA methylation data was generated on extracted blood samples from 129 affected individuals with the Illumina Infinium EPIC arrays and analyzed using an established bioinformatic pipeline. RESULTS: The DNA methylation profiles matched and confirmed the sequence findings in both the discovery and validation cohorts. Twenty-five affected individuals carrying a variant of uncertain significance, did not show a methylation profile matching any of the known episignatures. Three additional variant of uncertain significance cases with an identified KDM6A variant were re-classified as likely pathogenic (n = 2) or re-assigned as Wolf-Hirschhorn syndrome (n = 1). Thirty of the 33 Next Generation Sequencing negative cases did not match a defined episignature while three matched Kabuki syndrome, Rubinstein-Taybi syndrome and BAFopathy respectively. CONCLUSION: With the expanding clinical utility of the EpiSign assay, DNA methylation analysis should be considered part of the testing cascade for individuals presenting with clinical features of Mendelian chromatinopathy disorders.


Asunto(s)
Anomalías Múltiples , Enfermedades Hematológicas , Enfermedades Vestibulares , Metilación de ADN/genética , Genoma , Humanos
3.
J Med Genet ; 57(11): 760-768, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32170002

RESUMEN

BACKGROUND: The regulation of the chromatin state by epigenetic mechanisms plays a central role in gene expression, cell function, and maintenance of cell identity. Hereditary disorders of chromatin regulation are a group of conditions caused by abnormalities of the various components of the epigenetic machinery, namely writers, erasers, readers, and chromatin remodelers. Although neurological dysfunction is almost ubiquitous in these disorders, the constellation of additional features characterizing many of these genes and the emerging clinical overlap among them indicate the existence of a community of syndromes. The introduction of high-throughput next generation sequencing (NGS) methods for testing multiple genes simultaneously is a logical step for the implementation of diagnostics of these disorders. METHODS: We screened a heterogeneous cohort of 263 index patients by an NGS-targeted panel, containing 68 genes associated with more than 40 OMIM entries affecting chromatin function. RESULTS: This strategy allowed us to identify clinically relevant variants in 87 patients (32%), including 30 for which an alternative clinical diagnosis was proposed after sequencing analysis and clinical re-evaluation. CONCLUSION: Our findings indicate that this approach is effective not only in disorders with locus heterogeneity, but also in order to anticipate unexpected misdiagnoses due to clinical overlap among cognate disorders. Finally, this work highlights the utility of a prompt diagnosis in such a clinically and genetically heterogeneous group of disorders that we propose to group under the umbrella term of chromatinopathies.


Asunto(s)
Factor de Unión a CCCTC/genética , Cromatina/genética , Síndrome de Coffin-Lowry/genética , Síndrome de Cornelia de Lange/genética , Predisposición Genética a la Enfermedad , Adenosina Trifosfatasas/genética , Adulto , Niño , Cromatina/patología , Síndrome de Coffin-Lowry/epidemiología , Síndrome de Coffin-Lowry/patología , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Síndrome de Cornelia de Lange/epidemiología , Síndrome de Cornelia de Lange/patología , Epigénesis Genética/genética , Femenino , Pruebas Genéticas , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Masculino , Mutación/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Factores de Transcripción/genética
4.
Hum Genet ; 137(10): 817-829, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30276538

RESUMEN

We investigated 52 cases of de novo unbalanced translocations, consisting in a terminally deleted or inverted-duplicated deleted (inv-dup del) 46th chromosome to which the distal portion of another chromosome or its opposite end was transposed. Array CGH, whole-genome sequencing, qPCR, FISH, and trio genotyping were applied. A biparental origin of the deletion and duplication was detected in 6 cases, whereas in 46, both imbalances have the same parental origin. Moreover, the duplicated region was of maternal origin in more than half of the cases, with 25% of them showing two maternal and one paternal haplotype. In all these cases, maternal age was increased. These findings indicate that the primary driver for the occurrence of the de novo unbalanced translocations is a maternal meiotic non-disjunction, followed by partial trisomy rescue of the supernumerary chromosome present in the trisomic zygote. In contrast, asymmetric breakage of a dicentric chromosome, originated either at the meiosis or postzygotically, in which the two resulting chromosomes, one being deleted and the other one inv-dup del, are repaired by telomere capture, appears at the basis of all inv-dup del translocations. Notably, this mechanism also fits with the origin of some simple translocations in which the duplicated region was of paternal origin. In all cases, the signature at the translocation junctions was that of non-homologous end joining (NHEJ) rather than non-allelic homologous recombination (NAHR). Our data imply that there is no risk of recurrence in the following pregnancies for any of the de novo unbalanced translocations we discuss here.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Meiosis , Reparación del ADN por Recombinación , Translocación Genética/genética , Femenino , Humanos , Masculino
5.
Eur J Hum Genet ; 31(9): 1023-1031, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37344571

RESUMEN

BRAT1 biallelic variants are associated with rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL), and neurodevelopmental disorder associating cerebellar atrophy with or without seizures syndrome (NEDCAS). To date, forty individuals have been reported in the literature. We collected clinical and molecular data from 57 additional cases allowing us to study a large cohort of 97 individuals and draw phenotype-genotype correlations. Fifty-nine individuals presented with BRAT1-related RMFSL phenotype. Most of them had no psychomotor acquisition (100%), epilepsy (100%), microcephaly (91%), limb rigidity (93%), and died prematurely (93%). Thirty-eight individuals presented a non-lethal phenotype of BRAT1-related NEDCAS phenotype. Seventy-six percent of the patients in this group were able to walk and 68% were able to say at least a few words. Most of them had cerebellar ataxia (82%), axial hypotonia (79%) and cerebellar atrophy (100%). Genotype-phenotype correlations in our cohort revealed that biallelic nonsense, frameshift or inframe deletion/insertion variants result in the severe BRAT1-related RMFSL phenotype (46/46; 100%). In contrast, genotypes with at least one missense were more likely associated with NEDCAS (28/34; 82%). The phenotype of patients carrying splice variants was variable: 41% presented with RMFSL (7/17) and 59% with NEDCAS (10/17).


Asunto(s)
Epilepsia , Enfermedades Neurodegenerativas , Humanos , Proteínas Nucleares/genética , Epilepsia/genética , Fenotipo , Genotipo , Estudios de Asociación Genética , Enfermedades Neurodegenerativas/genética , Atrofia
6.
Genes (Basel) ; 12(8)2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34440290

RESUMEN

The cohesin complex is a large evolutionary conserved functional unit which plays an essential role in DNA repair and replication, chromosome segregation and gene expression. It consists of four core proteins, SMC1A, SMC3, RAD21, and STAG1/2, and by proteins regulating the interaction between the complex and the chromosomes. Mutations in the genes coding for these proteins have been demonstrated to cause multisystem developmental disorders known as "cohesinopathies". The most frequent and well recognized among these distinctive clinical conditions are the Cornelia de Lange syndrome (CdLS, OMIM 122470) and Roberts syndrome (OMIM 268300). STAG1 belongs to the STAG subunit of the core cohesin complex, along with five other subunits. Pathogenic variants in STAG1 gene have recently been reported to cause an emerging syndromic form of neurodevelopmental disorder that is to date poorly characterized. Here, we describe a 5 year old female patient with neurodevelopmental delay, mild intellectual disability, dysmorphic features and congenital anomalies, in which next generation sequencing analysis allowed us to identify a novel pathogenic variation c.2769_2770del p.(Ile924Serfs*8) in STAG1 gene, which result to be de novo. The variant has never been reported before in medical literature and is absent in public databases. Thus, it is useful to expand the molecular spectrum of clinically relevant alterations of STAG1 and their phenotypic consequences.


Asunto(s)
Mutación del Sistema de Lectura , Trastornos del Neurodesarrollo/genética , Proteínas Nucleares/genética , Preescolar , Femenino , Humanos , Masculino , Linaje
7.
Genes (Basel) ; 12(2)2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562463

RESUMEN

Neurodevelopmental disorders (NDDs) are a group of highly prevalent, clinically and genetically heterogeneous pediatric disorders comprising, according to the Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM-V), intellectual disability, developmental delay, autism spectrum disorders, and other neurological and cognitive disorders manifesting in the developmental age. To date, more than 1000 genes have been implicated in the etiopathogenesis of NNDs. Among them, AUTS2 (OMIM # 607270) encodes a protein involved in neural migration and neuritogenesis, and causes NNDs with different molecular mechanisms including copy number variations, single or multiple exonic deletion and single nucleotide variants. We describes a 9-year-old boy with global developmental delay, absent speech, minor craniofacial anomalies, hypoplasia of the cerebellar vermis and thinning of the corpus callosum, resulted carrier of the de novo AUTS2 c.1603_1626del deletion at whole exome sequencing (WES) predicted to cause the loss of eight amino acids [p.(His535_Thr542del)]. Notably, our patient is the first reported so far in medical literature carrying an in-frame deletion and the first in which absent language, hypoplasia of the cerebellar vermis and thinning of the corpus callosum has been observed thus useful to expand the molecular spectrum of AUTS2 pathogenic variants and to broaden our knowledge on the clinical phenotype associated.


Asunto(s)
Trastorno Dismórfico Corporal/genética , Proteínas del Citoesqueleto/genética , Discapacidades del Desarrollo/genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Factores de Transcripción/genética , Trastorno Dismórfico Corporal/patología , Corteza Cerebral/anomalías , Corteza Cerebral/patología , Niño , Discapacidades del Desarrollo/patología , Exones , Humanos , Discapacidad Intelectual/patología , Masculino , Fenotipo , Eliminación de Secuencia/genética , Trastornos del Habla/genética , Trastornos del Habla/patología , Secuenciación del Exoma
8.
Mol Cytogenet ; 8: 15, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25774220

RESUMEN

BACKGROUND: Pure interstitial duplications of chromosome band 4p16.3 represent an infrequent chromosomal finding with, to the best of our knowledge, only two patients to date reported. CASE PRESENTATION: We report on a 13-year-old boy showing a set of dysmorphic facial features, attention deficit hyperactivity disorders, learning difficulties, speech and cognitive delays, overgrowth and musculoskeletal anomalies in whom an interstitial duplication of about 400 kb in 4p16.3 was detected by SNP-array analysis. The duplication includes the complete coding sequence of FAM53A, SLBP, TMEM129 and TACC3 genes and the first exon of the FGFR3 gene. Phenotypic comparison with previously described patients harboring a microduplication of similar size and position contributes to better define the clinical correlation of 4p16.3 microduplications, suggesting the existence of a novel distinct and phenotypically recognizable syndrome. In addition, being the duplication identified in our case the smallest so far reported, it allowed us to refine the smallest region of overlap among patients to 222 kb, enabling a more accurate genotype-phenotype correlation for 4p16.3 microduplications. CONCLUSIONS: Our case report provide clinical and molecular evidences supporting the existence of a novel 4p16.3 microduplication syndrome. The genes FAM53A, TACC3 and FGFR3 seems to play a key role in the etiology of the clinical phenotype. Interestingly, our patient is the oldest described so far and for this reason useful to delineate the long-term prognosis of these patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA