Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev E ; 105(1-2): 015306, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35193293

RESUMEN

The capability to simulate a two-way coupled interaction between a rarefied gas and an arbitrary-shaped colloidal particle is important for many practical applications, such as aerospace engineering, lung drug delivery, and semiconductor manufacturing. By means of numerical simulations based on the direct-simulation Monte Carlo (DSMC) method, we investigate the influence of the orientation of the particle and rarefaction on the drag and lift coefficients, in the case of prolate and oblate ellipsoidal particles immersed in a uniform ambient flow. This is done by modeling the solid particles using a cut-cell algorithm embedded within our DSMC solver. In this approach, the surface of the particle is described by its analytical expression and the microscopic gas-solid interactions are computed exactly using a ray-tracing technique. The measured drag and lift coefficients are used to extend the correlations, based on the sine-squared drag law, available in the continuum regime to the rarefied regime, focusing on the transitional and free-molecular regimes. The functional forms of the correlations for the ellipsoidal particles are chosen as a generalization from the spherical case. We show that the fits over the data from numerical simulations can be extended to regimes outside the simulated range of Kn. Our approach allows to achieve a higher precision when compared with existing predictive models from the literature. Finally, we underline the importance of this work in providing correlations for nonspherical particles that can be used for point-particle Euler-Lagrangian simulations to address the problem of contamination from finite-size particles in high-tech mechanical systems.

2.
Phys Rev E ; 103(1-1): 013303, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33601495

RESUMEN

We investigate and compare the accuracy and efficiency of different numerical approaches to model the dynamics of finite-size particles using the lattice Boltzmann method (LBM). This includes the standard bounce-back (BB) and the equilibrium interpolation (EI) schemes. To accurately compare the different implementations, we first introduce a boundary condition to approximate the flow properties of an unbounded fluid in a finite simulation domain, taking into account the perturbation induced by a moving particle. We show that this boundary treatment is efficient in suppressing detrimental effects on the dynamics of spherical and ellipsoidal particles arising from the finite size of the simulation domain. We then investigate the performances of the BB and EI schemes in modeling the dynamics of a spherical particle settling under Stokes conditions, which can now be reproduced with great accuracy thanks to the treatment of the exterior boundary. We find that the EI scheme outperforms the BB scheme in providing a better accuracy scaling with respect to the resolution of the settling particle, while suppressing finite-size effects due to the particle discretization on the lattice grid. Additionally, in order to further increase the capability of the algorithm in modeling particles of sizes comparable to the lattice spacing, we propose an improvement to the EI scheme, the complete equilibrium interpolation (CEI). This approach allows us to accurately capture the boundaries of the particle also when located between two fluid nodes. We evaluate the CEI performance in solving the dynamics of an under-resolved particle under analogous Stokes conditions and also for the case of a rotating ellipsoid in a shear flow. Finally, we show that EI and CEI are able to recover the correct flow solutions also at small, but finite, Reynolds number. Adopting the CEI scheme it is not only possible to detect particles with zero lattice occupation, but also to increase up to one order of magnitude the accuracy of the dynamics of particles with a size comparable to the lattice spacing with respect to the BB and the EI schemes.

3.
Phys Rev E ; 102(1-1): 013102, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32795017

RESUMEN

The focus of this research is to delineate the thermal behavior of a rarefied monatomic gas confined between horizontal hot and cold walls, physically known as rarefied Rayleigh-Bénard (RB) convection. Convection in a rarefied gas appears only for high temperature differences between the horizontal boundaries, where nonlinear distributions of temperature and density make it different from the classical RB problem. Numerical simulations adopting the direct simulation Monte Carlo approach are performed to study the rarefied RB problem for a cold to hot wall temperature ratio equal to r=0.1 and different rarefaction conditions. Rarefaction is quantified by the Knudsen number, Kn. To investigate the long-time thermal behavior of the system two ways are followed to measure the heat transfer: (i) measurements of macroscopic hydrodynamic variables in the bulk of the flow and (ii) measurements at the microscopic scale based on the molecular evaluation of the energy exchange between the isothermal wall and the fluid. The measurements based on the bulk and molecular scales agreed well. Hence, both approaches are considered in evaluations of the heat transfer in terms of the Nusselt number, Nu. To characterize the flow properly, a modified Rayleigh number (Ra_{m}) is defined to take into account the nonlinear temperature and density distributions at the pure conduction state. Then the limits of instability, indicating the transition of the conduction state into a convection state, at the low and large Froude asymptotes are determined based on Ra_{m}. At the large Froude asymptote, simulations following the onset of convection showed a relatively small range for the critical Rayleigh (Ra_{m}=1770±15) that flow instability occurs at each investigated rarefaction degree. Moreover, we measured the maximum Nusselt values Nu_{max} at each investigated Kn. It was observed that for Kn≥0.02, Nu_{max} decreases linearly until the transition to conduction at Kn≈0.03, known as the rarefaction limit for r=0.1, occurs. At the low Froude (parametric) asymptote, the emergence of a highly stratified flow is the prime suspect of the transition to conduction. The critical Ra_{m} in which this transition occurs is then determined at each Kn. The comparison of this critical Rayleigh versus Kn also shows a linear decrease from Ra_{m}≈7400 at Kn=0.02 to Ra_{m}≈1770 at Kn≈0.03.

4.
Philos Trans A Math Phys Eng Sci ; 374(2080)2016 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-27698045

RESUMEN

Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA