RESUMEN
The medical burden of stroke extends beyond the brain injury itself and is largely determined by chronic comorbidities that develop secondarily. We hypothesized that these comorbidities might share a common immunological cause, yet chronic effects post-stroke on systemic immunity are underexplored. Here, we identify myeloid innate immune memory as a cause of remote organ dysfunction after stroke. Single-cell sequencing revealed persistent pro-inflammatory changes in monocytes/macrophages in multiple organs up to 3 months after brain injury, notably in the heart, leading to cardiac fibrosis and dysfunction in both mice and stroke patients. IL-1ß was identified as a key driver of epigenetic changes in innate immune memory. These changes could be transplanted to naive mice, inducing cardiac dysfunction. By neutralizing post-stroke IL-1ß or blocking pro-inflammatory monocyte trafficking with a CCR2/5 inhibitor, we prevented post-stroke cardiac dysfunction. Such immune-targeted therapies could potentially prevent various IL-1ß-mediated comorbidities, offering a framework for secondary prevention immunotherapy.
Asunto(s)
Lesiones Encefálicas , Inmunidad Innata , Memoria Inmunológica , Inflamación , Interleucina-1beta , Ratones Endogámicos C57BL , Monocitos , Animales , Ratones , Interleucina-1beta/metabolismo , Lesiones Encefálicas/inmunología , Humanos , Masculino , Monocitos/metabolismo , Monocitos/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/inmunología , Cardiopatías/inmunología , Femenino , Receptores CCR2/metabolismo , Fibrosis , Epigénesis Genética , Inmunidad EntrenadaRESUMEN
The reduced ability of the central nervous system to regenerate with increasing age limits functional recovery following demyelinating injury. Previous work has shown that myelin debris can overwhelm the metabolic capacity of microglia, thereby impeding tissue regeneration in aging, but the underlying mechanisms are unknown. In a model of demyelination, we found that a substantial number of genes that were not effectively activated in aged myeloid cells displayed epigenetic modifications associated with restricted chromatin accessibility. Ablation of two class I histone deacetylases in microglia was sufficient to restore the capacity of aged mice to remyelinate lesioned tissue. We used Bacillus Calmette-Guerin (BCG), a live-attenuated vaccine, to train the innate immune system and detected epigenetic reprogramming of brain-resident myeloid cells and functional restoration of myelin debris clearance and lesion recovery. Our results provide insight into aging-associated decline in myeloid function and how this decay can be prevented by innate immune reprogramming.
Asunto(s)
Envejecimiento , Sistema Nervioso Central , Inmunidad Innata , Ratones Endogámicos C57BL , Microglía , Células Mieloides , Remielinización , Animales , Ratones , Envejecimiento/inmunología , Microglía/inmunología , Microglía/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Sistema Nervioso Central/inmunología , Vaina de Mielina/metabolismo , Vaina de Mielina/inmunología , Epigénesis Genética , Enfermedades Desmielinizantes/inmunología , Modelos Animales de EnfermedadRESUMEN
Loss of lymphocytes, particularly T cell apoptosis, is a central pathological event after severe tissue injury that is associated with increased susceptibility for life-threatening infections. The precise immunological mechanisms leading to T cell death after acute injury are largely unknown. Here, we identified a monocyte-T cell interaction driving bystander cell death of T cells in ischemic stroke and burn injury. Specifically, we found that stroke induced a FasL-expressing monocyte population, which led to extrinsic T cell apoptosis. This phenomenon was driven by AIM2 inflammasome-dependent interleukin-1ß (IL-1ß) secretion after sensing cell-free DNA. Pharmacological inhibition of this pathway improved T cell survival and reduced post-stroke bacterial infections. As such, this study describes inflammasome-dependent monocyte activation as a previously unstudied cause of T cell death after injury and challenges the current paradigms of post-injury lymphopenia.
Asunto(s)
Coinfección/inmunología , Proteínas de Unión al ADN/inmunología , Tolerancia Inmunológica/inmunología , Inflamasomas/inmunología , Transducción de Señal/inmunología , Animales , Apoptosis/inmunología , Infecciones Bacterianas/inmunología , Quemaduras/inmunología , Quemaduras/microbiología , Coinfección/microbiología , Humanos , Interleucina-1beta/inmunología , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología , Accidente Cerebrovascular/inmunología , Accidente Cerebrovascular/microbiología , Linfocitos T/inmunologíaRESUMEN
The risk of early recurrent events after stroke remains high despite currently established secondary prevention strategies1. Risk is particularly high in patients with atherosclerosis, with more than 10% of patients experiencing early recurrent events1,2. However, despite the enormous medical burden of this clinical phenomenon, the underlying mechanisms leading to increased vascular risk and recurrent stroke are largely unknown. Here, using a novel mouse model of stroke-induced recurrent ischaemia, we show that stroke leads to activation of the AIM2 inflammasome in vulnerable atherosclerotic plaques via an increase of circulating cell-free DNA. Enhanced plaque inflammation post-stroke results in plaque destabilization and atherothrombosis, finally leading to arterioarterial embolism and recurrent stroke within days after the index stroke. We confirm key steps of plaque destabilization also after experimental myocardial infarction and in carotid artery plaque samples from patients with acute stroke. Rapid neutrophil NETosis was identified as the main source of cell-free DNA after stroke and NET-DNA as the causative agent leading to AIM2 inflammasome activation. Neutralization of cell-free DNA by DNase treatment or inhibition of inflammasome activation reduced the rate of stroke recurrence after experimental stroke. Our findings present an explanation for the high recurrence rate after incident ischaemic events in patients with atherosclerosis. The detailed mechanisms uncovered here provide clinically uncharted therapeutic targets for which we show high efficacy to prevent recurrent events. Targeting DNA-mediated inflammasome activation after remote tissue injury represents a promising avenue for further clinical development in the prevention of early recurrent events.
Asunto(s)
Aterosclerosis , Inflamasomas , Placa Aterosclerótica , Recurrencia , Accidente Cerebrovascular , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Aterosclerosis/sangre , Aterosclerosis/complicaciones , Aterosclerosis/metabolismo , Aterosclerosis/patología , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/metabolismo , Modelos Animales de Enfermedad , Proteínas de Unión al ADN/metabolismo , Trampas Extracelulares/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Inflamación/patología , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Neutrófilos/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Desoxirribonucleasas/metabolismoRESUMEN
Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes1. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia)2-6. Here, because the peripheral nervous system uses the adventitia as its principal conduit to reach distant targets7-9, we postulated that the peripheral nervous system may directly interact with diseased arteries. Unexpectedly, widespread neuroimmune cardiovascular interfaces (NICIs) arose in mouse and human atherosclerosis-diseased adventitia segments showed expanded axon networks, including growth cones at axon endings near immune cells and media smooth muscle cells. Mouse NICIs established a structural artery-brain circuit (ABC): abdominal adventitia nociceptive afferents10-14 entered the central nervous system through spinal cord T6-T13 dorsal root ganglia and were traced to higher brain regions, including the parabrachial and central amygdala neurons; and sympathetic efferent neurons projected from medullary and hypothalamic neurons to the adventitia through spinal intermediolateral neurons and both coeliac and sympathetic chain ganglia. Moreover, ABC peripheral nervous system components were activated: splenic sympathetic and coeliac vagus nerve activities increased in parallel to disease progression, whereas coeliac ganglionectomy led to the disintegration of adventitial NICIs, reduced disease progression and enhanced plaque stability. Thus, the peripheral nervous system uses NICIs to assemble a structural ABC, and therapeutic intervention in the ABC attenuates atherosclerosis.
Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Aterosclerosis/prevención & control , Progresión de la Enfermedad , Ganglios Espinales , Ganglios Simpáticos , Ratones , Neuronas/fisiología , Placa Aterosclerótica/prevención & controlRESUMEN
Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's disease (PD) and Alzheimer's disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aß42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues.
Asunto(s)
Enfermedad de Alzheimer , Cadenas HLA-DRB1 , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/genética , Antígenos de Histocompatibilidad , Antígenos HLA , Cadenas HLA-DRB1/genética , Enfermedad de Parkinson/genéticaRESUMEN
BACKGROUND: Genetic and experimental studies support a causal involvement of IL-6 (interleukin-6) signaling in atheroprogression. Although trials targeting IL-6 signaling are underway, any benefits must be balanced against an impaired host immune response. Dissecting the mechanisms that mediate the effects of IL-6 signaling on atherosclerosis could offer insights about novel drug targets with more specific effects. METHODS: Leveraging data from 522 681 individuals, we constructed a genetic instrument of 26 variants in the gene encoding the IL-6R (IL-6 receptor) that proxied for pharmacological IL-6R inhibition. Using Mendelian randomization, we assessed its effects on 3281 plasma proteins quantified with an aptamer-based assay in the INTERVAL cohort (n=3301). Using mediation Mendelian randomization, we explored proteomic mediators of the effects of genetically proxied IL-6 signaling on coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease. For significant mediators, we tested associations of their circulating levels with incident cardiovascular events in a population-based study (n=1704) and explored the histological, transcriptomic, and cellular phenotypes correlated with their expression levels in samples from human atherosclerotic lesions. RESULTS: We found significant effects of genetically proxied IL-6 signaling on 70 circulating proteins involved in cytokine production/regulation and immune cell recruitment/differentiation, which correlated with the proteomic effects of pharmacological IL-6R inhibition in a clinical trial. Among the 70 significant proteins, genetically proxied circulating levels of CXCL10 (C-X-C motif chemokine ligand 10) were associated with risk of coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease, with up to 67% of the effects of genetically downregulated IL-6 signaling on these end points mediated by decreases in CXCL10. Higher midlife circulating CXCL10 levels were associated with a larger number of cardiovascular events over 20 years, whereas higher CXCL10 expression in human atherosclerotic lesions correlated with a larger lipid core and a transcriptomic profile reflecting immune cell infiltration, adaptive immune system activation, and cytokine signaling. CONCLUSIONS: Integrating multiomics data, we found a proteomic signature of IL-6 signaling activation and mediators of its effects on cardiovascular disease. Our analyses suggest the interferon-γ-inducible chemokine CXCL10 to be a potentially causal mediator for atherosclerosis in 3 vascular compartments and, as such, could serve as a promising drug target for atheroprotection.
Asunto(s)
Aterosclerosis , Quimiocina CXCL10 , Interleucina-6 , Proteogenómica , Humanos , Aterosclerosis/genética , Quimiocina CXCL10/metabolismo , Enfermedad de la Arteria Coronaria/genética , Estudio de Asociación del Genoma Completo , Interleucina-6/metabolismo , Análisis de la Aleatorización Mendeliana , Enfermedad Arterial Periférica , Proteómica , Accidente Cerebrovascular/genéticaRESUMEN
Patients suffering from strokes are at increased risk of developing post-stroke dementia. Serum anti-NMDA receptor autoantibodies (NMDAR1-abs) have been associated with unfavorable post-stroke outcomes. However, their effect on specific cognitive domains remains unclear. We used data from the prospective multicenter DZNE-mechanisms after stroke (DEMDAS) cohort, and measured NMDAR1-abs in serum at baseline. Cognitive function was assessed with a comprehensive neuropsychological test battery at 6- and 12-months follow-up. We employed crude and stepwise confounder adjusted linear and logistic regression models as well as generalized estimating equation models (GEE) to determine the relevance of NMDAR1-abs seropositivity on cognitive function after stroke. 10.2% (58/569) DEMDAS patients were NMDAR1-abs seropositive (IgM:n = 44/IgA:n = 21/IgG:n = 2). Seropositivity was not associated with global cognitive impairment after stroke. However, NMDAR1-abs seropositive patients performed lower in the memory domain (ßadjusted = -0.11; 95%CI = -0.57 to -0.03) and were at increased risk for memory impairment (ORadjusted = 3.8; 95%CI = 1.33-10.82) compared to seronegative patients, 12 months after stroke. Further, NMDAR1-abs were linked to memory impairment over time in GEE from 6- to 12-months follow-up (ORadjusted = 2.41; 95%CI = 1.05-5.49). Our data suggests that NMDAR1-abs contribute to memory dysfunction 1 year after stroke while not affecting other cognitive subdomains. Hence, antineuronal autoimmunity may be involved in distinct mechanisms of post-stroke memory impairment. Clinical trial name and registration number: The Determinants of Dementia After Stroke (DEMDAS; study identifier on clinical trials.gov: NCT01334749).
RESUMEN
OBJECTIVE: Polygenic variation accounts for a substantial portion of the risk of Alzheimer's disease (AD), but its effect on the rate of fibrillar-tau accumulation as a key driver of dementia symptoms is unclear. METHODS: We combined the to-date largest number of genetic risk variants of AD (n = 85 lead single-nucleotide polymorphisms [SNPs]) from recent genome-wide association studies (GWAS) to generate a polygenic score (PGS). We assessed longitudinal tau-positron emission tomography (PET), amyloid-PET, and cognition in 231 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Using the PGS, together with global amyloid-PET, we predicted the rate of tau-PET increases in Braak-stage regions-of-interest and cognitive decline. We also assessed PGS-risk enrichment effects on the required sample size in clinical trials targeting tau pathology. RESULTS: We found that a higher PGS was associated with higher rates of tau-PET accumulation, in particular at elevated amyloid-PET levels. The tau-PET increases mediated the association between PGS and faster cognitive decline. Risk enrichment through high PGS afforded sample size savings by 34%. INTERPRETATION: Our results demonstrate that the PGS predicts faster tau progression and thus cognitive decline, showing utility to enhance statistical power in clinical trials. ANN NEUROL 2023;93:819-829.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Estudio de Asociación del Genoma Completo , Encéfalo/patología , Biomarcadores , Disfunción Cognitiva/diagnóstico , Tomografía de Emisión de Positrones/métodos , Amiloide , Péptidos beta-Amiloides/genéticaRESUMEN
OBJECTIVE: Cerebral small vessel diseases (cSVDs) are a major cause of stroke and dementia. We used cutting-edge 7T-MRI techniques in patients with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), to establish which aspects of cerebral small vessel function are affected by this monogenic form of cSVD. METHODS: We recruited 23 CADASIL patients (age 51.1 ± 10.1 years, 52% women) and 13 age- and sex-matched controls (46.1 ± 12.6, 46% women). Small vessel function measures included: basal ganglia and centrum semiovale perforating artery blood flow velocity and pulsatility, vascular reactivity to a visual stimulus in the occipital cortex and reactivity to hypercapnia in the cortex, subcortical gray matter, white matter, and white matter hyperintensities. RESULTS: Compared with controls, CADASIL patients showed lower blood flow velocity and higher pulsatility index within perforating arteries of the centrum semiovale (mean difference - 0.09 cm/s, p = 0.03 and 0.20, p = 0.009) and basal ganglia (mean difference - 0.98 cm/s, p = 0.003 and 0.17, p = 0.06). Small vessel reactivity to a short visual stimulus was decreased (blood-oxygen-level dependent [BOLD] mean difference -0.21%, p = 0.04) in patients, while reactivity to hypercapnia was preserved in the cortex, subcortical gray matter, and normal appearing white matter. Among patients, reactivity to hypercapnia was decreased in white matter hyperintensities compared to normal appearing white matter (BOLD mean difference -0.29%, p = 0.02). INTERPRETATION: Multiple aspects of cerebral small vessel function on 7T-MRI were abnormal in CADASIL patients, indicative of increased arteriolar stiffness and regional abnormalities in reactivity, locally also in relation to white matter injury. These observations provide novel markers of cSVD for mechanistic and intervention studies. ANN NEUROL 2023;93:29-39.
Asunto(s)
CADASIL , Enfermedades de los Pequeños Vasos Cerebrales , Humanos , Femenino , Adulto , Persona de Mediana Edad , Masculino , CADASIL/diagnóstico por imagen , Hipercapnia/diagnóstico por imagen , Imagen por Resonancia Magnética , Infarto Cerebral , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagenRESUMEN
BACKGROUND: Autoantibodies against the potassium voltage-gated channel subfamily A member 2 (KCNA2) have been described in a few cases of neuropsychiatric disorders, but their diagnostic and pathophysiological role is currently unknown, imposing challenges to medical practice. DESIGN / METHODS: We retrospectively collected comprehensive clinical and paraclinical data of 35 patients with KCNA2 IgG autoantibodies detected in cell-based and tissue-based assays. Patients' sera and cerebrospinal fluid (CSF) were used for characterization of the antigen, clinical-serological correlations, and determination of IgG subclasses. RESULTS: KCNA2 autoantibody-positive patients (n = 35, median age at disease onset of 65 years, range of 16-83 years, 74 % male) mostly presented with cognitive impairment and/or epileptic seizures but also ataxia, gait disorder and personality changes. Serum autoantibodies belonged to IgG3 and IgG1 subclasses and titers ranged from 1:32 to 1:10,000. KCNA2 IgG was found in the CSF of 8/21 (38 %) patients and in the serum of 4/96 (4.2 %) healthy blood donors. KCNA2 autoantibodies bound to characteristic anatomical areas in the cerebellum and hippocampus of mammalian brain and juxtaparanodal regions of peripheral nerves but reacted exclusively with intracellular epitopes. A subset of four KCNA2 autoantibody-positive patients responded markedly to immunotherapy alongside with conversion to seronegativity, in particular those presenting an autoimmune encephalitis phenotype and receiving early immunotherapy. An available brain biopsy showed strong immune cell invasion. KCNA2 autoantibodies occurred in less than 10 % in association with an underlying tumor. CONCLUSION: Our data suggest that KCNA2 autoimmunity is clinically heterogeneous. Future studies should determine whether KCNA2 autoantibodies are directly pathogenic or develop secondarily. Early immunotherapy should be considered, in particular if autoantibodies occur in CSF or if clinical or diagnostic findings suggest ongoing inflammation. Suspicious clinical phenotypes include autoimmune encephalitis, atypical dementia, new-onset epilepsy and unexplained epileptic seizures.
Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Autoinmunidad , Encefalitis , Enfermedad de Hashimoto , Animales , Humanos , Masculino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Femenino , Estudios Retrospectivos , Autoanticuerpos , Convulsiones , Mamíferos , Canal de Potasio Kv.1.2RESUMEN
Poststroke cognitive impairment and dementia (PSCID) is a major source of morbidity and mortality after stroke worldwide. PSCID occurs as a consequence of ischemic stroke, intracerebral hemorrhage, or subarachnoid hemorrhage. Cognitive impairment and dementia manifesting after a clinical stroke is categorized as vascular even in people with comorbid neurodegenerative pathology, which is common in elderly individuals and can contribute to the clinical expression of PSCID. Manifestations of cerebral small vessel disease, such as covert brain infarcts, white matter lesions, microbleeds, and cortical microinfarcts, are also common in patients with stroke and likewise contribute to cognitive outcomes. Although studies of PSCID historically varied in the approach to timing and methods of diagnosis, most of them demonstrate that older age, lower educational status, socioeconomic disparities, premorbid cognitive or functional decline, life-course exposure to vascular risk factors, and a history of prior stroke increase risk of PSCID. Stroke characteristics, in particular stroke severity, lesion volume, lesion location, multiplicity and recurrence, also influence PSCID risk. Understanding the complex interaction between an acute stroke event and preexisting brain pathology remains a priority and will be critical for developing strategies for personalized prediction, prevention, targeted interventions, and rehabilitation. Current challenges in the field relate to a lack of harmonization of definition and classification of PSCID, timing of diagnosis, approaches to neurocognitive assessment, and duration of follow-up after stroke. However, evolving knowledge on pathophysiology, neuroimaging, and biomarkers offers potential for clinical applications and may inform clinical trials. Preventing stroke and PSCID remains a cornerstone of any strategy to achieve optimal brain health. We summarize recent developments in the field and discuss future directions closing with a call for action to systematically include cognitive outcome assessment into any clinical studies of poststroke outcome.
Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Disfunción Cognitiva , Demencia Vascular , Demencia , Accidente Cerebrovascular , Anciano , Hemorragia Cerebral , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/etiología , Demencia/diagnóstico , Demencia/epidemiología , Demencia/etiología , Demencia Vascular/diagnóstico , Demencia Vascular/epidemiología , Demencia Vascular/etiología , Humanos , Imagen por Resonancia Magnética , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/terapiaRESUMEN
Alzheimer's disease and cerebral small vessel disease are the two leading causes of cognitive decline and dementia and coexist in most memory clinic patients. White matter damage as assessed by diffusion MRI is a key feature in both Alzheimer's and cerebral small vessel disease. However, disease-specific biomarkers of white matter alterations are missing. Recent advances in diffusion MRI operating on the fixel level (fibre population within a voxel) promise to advance our understanding of disease-related white matter alterations. Fixel-based analysis allows derivation of measures of both white matter microstructure, measured by fibre density, and macrostructure, measured by fibre-bundle cross-section. Here, we evaluated the capacity of these state-of-the-art fixel metrics to disentangle the effects of cerebral small vessel disease and Alzheimer's disease on white matter integrity. We included three independent samples (total n = 387) covering genetically defined cerebral small vessel disease and age-matched controls, the full spectrum of biomarker-confirmed Alzheimer's disease including amyloid- and tau-PET negative controls and a validation sample with presumed mixed pathology. In this cross-sectional analysis, we performed group comparisons between patients and controls and assessed associations between fixel metrics within main white matter tracts and imaging hallmarks of cerebral small vessel disease (white matter hyperintensity volume, lacune and cerebral microbleed count) and Alzheimer's disease (amyloid- and tau-PET), age and a measure of neurodegeneration (brain volume). Our results showed that (i) fibre density was reduced in genetically defined cerebral small vessel disease and strongly associated with cerebral small vessel disease imaging hallmarks; (ii) fibre-bundle cross-section was mainly associated with brain volume; and (iii) both fibre density and fibre-bundle cross-section were reduced in the presence of amyloid, but not further exacerbated by abnormal tau deposition. Fixel metrics were only weakly associated with amyloid- and tau-PET. Taken together, our results in three independent samples suggest that fibre density captures the effect of cerebral small vessel disease, while fibre-bundle cross-section is largely determined by neurodegeneration. The ability of fixel-based imaging markers to capture distinct effects on white matter integrity can propel future applications in the context of precision medicine.
Asunto(s)
Enfermedad de Alzheimer , Enfermedades de los Pequeños Vasos Cerebrales , Enfermedades Vasculares , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Estudios Transversales , Imagen de Difusión por Resonancia Magnética/métodos , Proteínas Amiloidogénicas , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patologíaRESUMEN
INTRODUCTION: While incident ischemic lesions (IILs) are not unusual on follow-up magnetic resonance imaging (MRI) following stroke, their risk factors and prognostic significance remain unknown. METHODS: In a prospective multicenter study of 503 acute stroke patients, we assessed IILs on registered MRI images at baseline and 6 months, analyzing risk factors and clinical outcomes across 36 months. RESULTS: At 6 months, 78 patients (15.5%) had IILs, mostly diffusion-weighted imaging-positive (72%) and clinically covert (91%). Older age and small vessel disease (SVD) lesions were baseline risk factors for IILs. IILs were associated with worse cognitive (beta for global cognition: -0.31, 95% confidence interval [CI]: -0.48 to -0.14) and functional outcomes (beta for modified Rankin scale [mRS]: 0.36, 95% CI: 0.14 to 0.58), and higher recurrent stroke risk (hazard ratio: 3.81, 95% CI: 1.35 to 10.69). IILs partially explained the relationship between SVD and poor cognition. DISCUSSION: IILs are common and are associated with worse cognitive and functional outcomes and stroke recurrence risk. Assessing IILs following stroke might aid prognostication. HIGHLIGHTS: Incident ischemic lesions (IILs) were assessed with registered baseline and 6-month magnetic resonance imaging (MRI) scans in a stroke cohort. IILs 6 months after stroke are present in one-sixth of patients and are mostly clinically silent. Small vessel disease burden is the main baseline risk factor for IILs. IILs are associated with cognitive and functional impairment and stroke recurrence. Assessing IILs by follow-up MRI aids long-term prognostication for stroke patients.
RESUMEN
BACKGROUND: Atrial fibrillation (AF) is one of the most frequent causes of stroke. Several randomized trials have shown that prolonged monitoring increases the detection of AF, but the effect on reducing recurrent cardioembolism, ie, ischemic stroke and systemic embolism, remains unknown. We aim to evaluate whether a risk-adapted, intensified heart rhythm monitoring with consequent guideline conform treatment, which implies initiation of oral anticoagulation (OAC), leads to a reduction of recurrent cardioembolism. METHODS: Find-AF 2 is a randomized, controlled, open-label parallel multicenter trial with blinded endpoint assessment. 5,200 patients ≥ 60 years of age with symptomatic ischemic stroke within the last 30 days and without known AF will be included at 52 study centers with a specialized stroke unit in Germany. Patients without AF in an additional 24-hour Holter ECG after the qualifying event will be randomized in a 1:1 fashion to either enhanced, prolonged and intensified ECG-monitoring (intervention arm) or standard of care monitoring (control arm). In the intervention arm, patients with a high risk of underlying AF will receive continuous rhythm monitoring using an implantable cardiac monitor (ICM) whereas those without high risk of underlying AF will receive repeated 7-day Holter ECGs. The duration of rhythm monitoring within the control arm is up to the discretion of the participating centers and is allowed for up to 7 days. Patients will be followed for at least 24 months. The primary efficacy endpoint is the time until recurrent ischemic stroke or systemic embolism occur. CONCLUSIONS: The Find-AF 2 trial aims to demonstrate that enhanced, prolonged and intensified rhythm monitoring results in a more effective prevention of recurrent ischemic stroke and systemic embolism compared to usual care.
Asunto(s)
Fibrilación Atrial , Embolia , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Lactante , Fibrilación Atrial/complicaciones , Fibrilación Atrial/diagnóstico , Furilfuramida , Estudios Prospectivos , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/prevención & control , Accidente Cerebrovascular/diagnóstico , Electrocardiografía Ambulatoria/métodos , Embolia/diagnóstico , Embolia/etiología , Embolia/prevención & controlRESUMEN
Tissue clearing methods enable the imaging of biological specimens without sectioning. However, reliable and scalable analysis of large imaging datasets in three dimensions remains a challenge. Here we developed a deep learning-based framework to quantify and analyze brain vasculature, named Vessel Segmentation & Analysis Pipeline (VesSAP). Our pipeline uses a convolutional neural network (CNN) with a transfer learning approach for segmentation and achieves human-level accuracy. By using VesSAP, we analyzed the vascular features of whole C57BL/6J, CD1 and BALB/c mouse brains at the micrometer scale after registering them to the Allen mouse brain atlas. We report evidence of secondary intracranial collateral vascularization in CD1 mice and find reduced vascularization of the brainstem in comparison to the cerebrum. Thus, VesSAP enables unbiased and scalable quantifications of the angioarchitecture of cleared mouse brains and yields biological insights into the vascular function of the brain.
Asunto(s)
Encéfalo/irrigación sanguínea , Aprendizaje Automático , Animales , Imagenología Tridimensional , RatonesRESUMEN
OBJECTIVE: Ischemic stroke etiology remains undetermined in 30% of cases. We explored the genetic architecture of stroke classified as undetermined to test if mechanisms and risk factors underlying large-artery atherosclerotic (LAAS), cardioembolic (CES), and small-vessel stroke (SVS) contribute to its pathogenesis. METHODS: We analyzed genome-wide data from 16,851 ischemic stroke cases and 32,473 controls. Using polygenic risk scores for LAAS, CES, and SVS, we assessed the genetic overlap with stroke of undetermined source and used pairwise genomewide association study (GWAS-PW) to search for shared loci. We then applied Mendelian randomization (MR) to identify potentially causal risk factors of stroke of undetermined source. RESULTS: Genetic risk for LAS, CES, and SVS was associated with stroke of undetermined source pointing to overlap in their genetic architecture. Pairwise analyses revealed 19 shared loci with LAAS, 2 with CES, and 5 with SVS that have been implicated in atherosclerosis-related phenotypes. Genetic liability to both carotid atherosclerosis and atrial fibrillation was associated with stroke of undetermined source, but the association with atrial fibrillation was attenuated after excluding cases with incomplete diagnostic workup. MR analyses showed effects of genetically determinants of blood pressure, diabetes, waist-to-hip ratio, inflammatory pathways (IL-6 signaling, MCP-1/CCL2 levels), and factor XI levels on stroke of undetermined source. INTERPRETATION: Stroke of undetermined source shares genetic and vascular risk factors with other stroke subtypes, especially LAAS, thus highlighting the diagnostic limitations of current subtyping approaches. The potentially causal associations with carotid atherosclerosis and atherosclerotic risk factors might have implications for prevention strategies targeting these mechanisms. ANN NEUROL 2022;91:640-651.
Asunto(s)
Fibrilación Atrial , Enfermedades de las Arterias Carótidas , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Factores de Riesgo , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/genéticaRESUMEN
INTRODUCTION: Experimental stroke studies suggest an influence of the time of day of stroke onset on infarct progression. Whether this holds true after human stroke is unknown, but would have implications for the design of randomised controlled trials, especially those on neuroprotection. METHODS: We pooled data from 583 patients with anterior large-vessel occlusion stroke from three prospectively recruited cohorts. Ischaemic core and penumbra volumes were determined with CT perfusion using automated thresholds. Core growth was calculated as the ratio of core volume and onset-to-imaging time. To determine circadian rhythmicity, we applied multivariable linear and sinusoidal regression analysis adjusting for potential baseline confounders. RESULTS: Patients with symptom onset at night showed larger ischaemic core volumes on admission compared with patients with onset during the day (median, 40.2 mL vs 33.8 mL), also in adjusted analyses (p=0.008). Sinusoidal analysis indicated a peak of core volumes with onset at 11pm. Core growth was faster at night compared with day onset (adjusted p=0.01), especially for shorter onset-to-imaging times. In contrast, penumbra volumes did not change across the 24-hour cycle. DISCUSSION: These results suggest that human infarct progression varies across the 24-hour cycle with potential implications for the design and interpretation of neuroprotection trials.
Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Humanos , Isquemia Encefálica/diagnóstico por imagen , Accidente Cerebrovascular/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Infarto , Ritmo CircadianoRESUMEN
BACKGROUND: The CCL2 (CC-chemokine ligand 2)/CCR2 (CC-chemokine receptor 2) axis governs monocyte recruitment to atherosclerotic lesions. Genetic and epidemiological studies show strong associations of CCL2 levels with atherosclerotic disease. Still, experimental studies testing pharmacological inhibition of CCL2 or CCR2 in atheroprone mice apply widely different approaches and report variable results, thus halting clinical translation. METHODS: We systematically searched the literature for studies employing pharmacological CCL2/CCR2 blockade in atheroprone mice and meta-analyzed their effects on lesion size and morphology. RESULTS: In a meta-analysis of 14 studies testing 11 different agents, CCL2/CCR2 blockade attenuated atherosclerotic lesion size in the aortic root or arch (g=-0.75 [-1.17 to -0.32], P=6×10-4; N=171/171 mice in experimental/control group), the carotid (g=-2.39 [-4.23 to -0.55], P=0.01; N=24/25), and the femoral artery (g=-2.38 [-3.50 to -1.26], P=3×10-5; N=10/10). Furthermore, CCL2/CCR2 inhibition reduced intralesional macrophage accumulation and increased smooth muscle cell content and collagen deposition. The effects of CCL2/CCR2 inhibition on lesion size correlated with reductions in plaque macrophage accumulation, in accord with a prominent role of CCL2/CCR2 signaling in monocyte recruitment. Subgroup analyses showed comparable efficacy of different CCL2- and CCR2-inhibitors in reducing lesion size and intralesional macrophages. The quality assessment revealed high risk of detection bias due to lack of blinding during outcome assessment, as well as evidence of attrition and reporting bias. CONCLUSIONS: Preclinical evidence suggests that pharmacological targeting of CCL2 or CCR2 might lower atherosclerotic lesion burden, but the majority of existing studies suffer major quality issues that highlight the need for additional high-quality research.
Asunto(s)
Aterosclerosis , Quimiocina CCL2 , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/prevención & control , Quimiocina CCL2/genética , Quimiocinas , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Monocitos/fisiología , Receptores CCR2/genéticaRESUMEN
Age-related loss of white matter microstructural integrity is a major determinant of cognitive decline, dementia and gait disorders. However, the mechanisms and molecular pathways that contribute to this loss of integrity remain elusive. We performed a genome-wide association study of white matter microstructural integrity as quantified by diffusion MRI metrics (mean diffusivity and fractional anisotropy) in up to 31 128 individuals from UK Biobank (age 45-81 years) based on a two degrees of freedom (2df) test of single nucleotide polymorphism (SNP) and SNP × Age effects. We identified 18 loci that were associated at genome-wide significance with either mean diffusivity (n = 16) or fractional anisotropy (n = 6). Among the top loci was a region on chromosome 6 encoding the human major histocompatibility complex (MHC). Variants in the MHC region were strongly associated with both mean diffusivity [best SNP: 6:28866209_TTTTG_T, beta (standard error, SE) = -0.069 (0.009); 2df P = 6.5 × 10-15] and fractional anisotropy [best SNP: rs3129787, beta (SE) = -0.056 (0.008); 2df P = 3.5 × 10-12]. Of the imputed human leukocyte antigen (HLA) alleles and complement component 4 (C4) structural haplotype variants in the human MHC, the strongest association was with the C4-BS variant [for mean diffusivity: beta (SE) = -0.070 (0.010); P = 2.7 × 10-11; for fractional anisotropy: beta (SE) = -0.054 (0.011); P = 1.6 × 10-7]. After conditioning on C4-BS no associations with HLA alleles remained significant. The protective influence of C4-BS was stronger in older participants [age ≥ 65; interaction P = 0.0019 (mean diffusivity), P = 0.015 (fractional anisotropy)] and in participants without a history of smoking [interaction P = 0.00093 (mean diffusivity), P = 0.021 (fractional anisotropy)]. Taken together, our findings demonstrate a role of the complement system and of gene-environment interactions in age-related loss of white matter microstructural integrity.