Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Chembiochem ; 16(3): 432-9, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25619419

RESUMEN

Cyclin-dependent kinases (CDKs) control many cellular processes and are considered important therapeutic targets. Large collections of inhibitors targeting CDK active sites have been discovered, but their use in chemical biology or drug development has been often hampered by their general lack of specificity. An alternative approach to develop more specific inhibitors is targeting protein interactions involving CDKs. CKS proteins interact with some CDKs and play important roles in cell division. We discovered two small-molecule inhibitors of CDK-CKS interactions. They bind to CDK2, do not inhibit its enzymatic activity, inhibit the proliferation of tumor cell lines, induce an increase in G1 and/or S-phase cell populations, and cause a decrease in CDK2, cyclin A, and p27(Kip1) levels. These molecules should help decipher the complex contributions of CDK-CKS complexes in the regulation of cell division, and they might present an interesting therapeutic potential.


Asunto(s)
Quinasas CDC2-CDC28/metabolismo , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Quinasas CDC2-CDC28/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , División Celular/efectos de los fármacos , Ciclina A/antagonistas & inhibidores , Ciclina A/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos Analíticos de Alto Rendimiento , Humanos , Células MCF-7/efectos de los fármacos , Simulación del Acoplamiento Molecular , Estructura Molecular , Terapia Molecular Dirigida , Mapas de Interacción de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo
2.
Med Sci (Paris) ; 31(6-7): 660-6, 2015.
Artículo en Francés | MEDLINE | ID: mdl-26152171

RESUMEN

The complete sequence of the human genome has been deciphered at the dawn of the new century. This historic event immediately challenged researchers with new needs both in terms of concepts and of working methods. Each scientific community considered how it could tackle these new challenges and it quickly became clear that using small chemical molecules would help discovering and characterizing the function of new proteins. The importance of the genes that the encode new proteins could thus be established in cells, organs and whole organisms. At the initiative of a handful of researchers, French chemists have organized the collection of their molecules and provided them to biologists. By doing so they killed two birds with one stone: on the one hand they created a unique opportunity to add value to their molecules by creating the first academic chemical library, and on the other hand they stimulated the launch of biologically active molecules discovery programs by biologists from the academic sector. It was necessary, however, to raise many compounds and ensure consistent quality control, which quickly became a priority for the chemical libraries to become reliable tools.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/normas , Animales , Artefactos , Curaduría de Datos/normas , Descubrimiento de Drogas/normas , Humanos , Modelos Moleculares , Control de Calidad , Proyectos de Investigación
3.
Biochim Biophys Acta ; 1833(7): 1720-31, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23333870

RESUMEN

The prominent role of Ca(2+) in cell physiology is mediated by a whole set of proteins involved in Ca(2+)-signal generation, deciphering and arrest. Among these intracellular proteins, calmodulin (CaM) known as a prototypical calcium sensor, serves as a ubiquitous carrier of the intracellular calcium signal in all eukaryotic cell types. CaM is assumed to be involved in many diseases including Parkinson, Alzheimer, and rheumatoid arthritis. Defects in some of many reaction partners of CaM might be responsible for disease symptoms. Several classes of drugs bind to CaM with unwanted side effects rather than specific therapeutic use. Thus, it may be more promising to concentrate at searching for pharmacological interferences with the CaM target proteins, in order to find tools for dissecting and investigating CaM-regulatory and modulatory functions in cells. In the present study, we have established a screening assay based on fluorescence polarization (FP) to identify a diverse set of small molecules that disrupt the regulatory function of CaM. The FP-based CaM assay consists in the competition of two fluorescent probes and a library of chemical compounds for binding to CaM. Screening of about 5300 compounds (Strasbourg Academic Library) by displacement of the probe yielded 39 compounds in a first step, from which 6 were selected. Those 6 compounds were characterized by means of calorimetry studies and by competitive displacement of two fluorescent probes interacting with CaM. Moreover, those small molecules were tested for their capability to displace 8 different CaM binding domains from CaM. Our results show that these CaM/small molecules interactions are not functionally equivalent. The strategy that has been set up for CaM is a general model for the development and validation of other CaM interactors, to decipher their mode of action, or rationally design more specific CaM antagonists. Moreover, this strategy may be used for other protein binding assays intended to screen for molecules with preferred binding activity. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.


Asunto(s)
Calcio/metabolismo , Calmodulina/antagonistas & inhibidores , Calmodulina/metabolismo , Membrana Celular/metabolismo , Fragmentos de Péptidos/farmacología , Sitio Alostérico , Sitios de Unión , Unión Competitiva , Canales de Calcio Tipo L/metabolismo , Polarización de Fluorescencia , Humanos , Estructura Molecular , Biblioteca de Péptidos , Unión Proteica , Termodinámica
4.
Anal Chem ; 85(18): 8787-95, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-23931734

RESUMEN

We have developed a surface plasmon resonance (SPR)-based inhibition in solution assay (ISA) to search for inhibitors of the medium affinity (KD = 0.8 µM) interaction between an E6-derived peptide (E6peptide) immobilized on the sensor and a PDZ domain (MAGI-1 PDZ1) in the mobile phase. DZ domains are widespread protein-protein interaction modules that recognize the C-terminus of various partners. Simulations indicated that relatively low compound concentrations (10 µM) and limited peptide densities (Rmax < 200 resonance units) should allow the detection of inhibitors with a target affinity close to 100 µM, which was then demonstrated experimentally. ISA screening, carried out on the Prestwick Chemical Library® (1120 compounds), identified 36 compounds that inhibited the interaction by more than 5%. Concentration-dependent ISA, carried out on a subset of 19 potential inhibitors, indicated that 13 of these indeed affected the interaction between MAGI-1 PDZ1 and the E6peptide. No effect was observed for 84 compounds randomly chosen among noninhibitors. One of the four best inhibitors was a peptide binder, and three were PDZ binders with KD in the 10-50 µM range. We propose that a medium (µM) affinity between the target and surface-bound partner is optimal for SPR-based ISA screening.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Simulación por Computador , Bibliotecas de Moléculas Pequeñas/metabolismo , Resonancia por Plasmón de Superficie/métodos , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Moléculas de Adhesión Celular , Guanilato-Quinasas , Humanos , Datos de Secuencia Molecular , Unión Proteica/fisiología , Distribución Aleatoria , Bibliotecas de Moléculas Pequeñas/análisis , Soluciones
5.
Anal Biochem ; 421(2): 417-27, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22037289

RESUMEN

We investigated the suitability of surface plasmon resonance (SPR) for providing quantitative binding information from direct screening of a chemical library on protein tyrosine phosphatase 1b (PTP1B). The experimental design was established from simulations to detect binding with K(D) < 10⁻4 M. The 1120 compounds (cpds) were injected sequentially at concentrations [C(cpd)] of 0.5 or 10 µM over various target surfaces. An optimized evaluation procedure was applied. More than 90% of cpds showed no detectable signal in four screens. The 30 highest responders at C(cpd)=10 µM, of which 25 were selected in at least one of three screens at C(cpd)=0.5 µM, contained 22 promiscuous binders and 8 potential PTP1B-specific binders with K(D) ~10⁻5 M. Inhibition of PTP1B activity was assayed and confirmed for 6 of these, including sanguinarine, a known PTP1B inhibitor. C(cpd) dependence studies fully confirmed screening conclusions. The quantitative consistency of SPR data led us to propose a structure-activity relationship (SAR) model for developing selective PTP1B inhibitors based on the ranking of 10 arylbutylpiperidine analogs.


Asunto(s)
Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/aislamiento & purificación , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Bibliotecas de Moléculas Pequeñas , Resonancia por Plasmón de Superficie/métodos , Secuencia de Aminoácidos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Concentración 50 Inhibidora , Sistemas de Lectura Abierta , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores
6.
J Virol Methods ; 288: 114013, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33166547

RESUMEN

The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) emergence in 2003 introduced the first serious human coronavirus pathogen to an unprepared world. To control emerging viruses, existing successful anti(retro)viral therapies can inspire antiviral strategies, as conserved viral enzymes (eg., viral proteases and RNA-dependent RNA polymerases) represent targets of choice. Since 2003, much effort has been expended in the characterization of the SARS-CoV replication/transcription machinery. Until recently, a pure and highly active preparation of SARS-CoV recombinant RNA synthesis machinery was not available, impeding target-based high throughput screening of drug candidates against this viral family. The current Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic revealed a new pathogen whose RNA synthesis machinery is highly (>96 % aa identity) homologous to SARS-CoV. This phylogenetic relatedness highlights the potential use of conserved replication enzymes to discover inhibitors against this significant pathogen, which in turn, contributes to scientific preparedness against emerging viruses. Here, we report the use of a purified and highly active SARS-CoV replication/transcription complex (RTC) to set-up a high-throughput screening of Coronavirus RNA synthesis inhibitors. The screening of a small (1520 compounds) chemical library of FDA-approved drugs demonstrates the robustness of our assay and will allow to speed-up drug discovery against the SARS-CoV-2.


Asunto(s)
Colorantes Fluorescentes , Ensayos Analíticos de Alto Rendimiento , ARN Viral , ARN Polimerasa Dependiente del ARN/metabolismo , Síndrome Respiratorio Agudo Grave/diagnóstico , Síndrome Respiratorio Agudo Grave/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Antivirales/farmacología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Activación Enzimática , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Concentración 50 Inhibidora , ARN Mensajero/genética , Moldes Genéticos
7.
PLoS One ; 10(8): e0134793, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26270679

RESUMEN

Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM), the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication.


Asunto(s)
Antineoplásicos , Citotoxinas , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Células Madre Neoplásicas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Citotoxinas/química , Citotoxinas/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Glioblastoma/patología , Humanos , Células Madre Neoplásicas/patología , Relación Estructura-Actividad
8.
J Biol Chem ; 283(34): 23189-99, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18556651

RESUMEN

The chemokine CXCL12 and the receptor CXCR4 play pivotal roles in normal vascular and neuronal development, in inflammatory responses, and in infectious diseases and cancer. For instance, CXCL12 has been shown to mediate human immunodeficiency virus-induced neurotoxicity, proliferative retinopathy and chronic inflammation, whereas its receptor CXCR4 is involved in human immunodeficiency virus infection, cancer metastasis and in the rare disease known as the warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis (WHIM) syndrome. As we screened chemical libraries to find inhibitors of the interaction between CXCL12 and the receptor CXCR4, we identified synthetic compounds from the family of chalcones that reduce binding of CXCL12 to CXCR4, inhibit calcium responses mediated by the receptor, and prevent CXCR4 internalization in response to CXCL12. We found that the chemical compounds display an original mechanism of action as they bind to the chemokine but not to CXCR4. The highest affinity molecule blocked chemotaxis of human peripheral blood lymphocytes ex vivo. It was also active in vivo in a mouse model of allergic eosinophilic airway inflammation in which we detected inhibition of the inflammatory infiltrate. The compound showed selectivity for CXCL12 and not for CCL5 and CXCL8 chemokines and blocked CXCL12 binding to its second receptor, CXCR7. By analogy to the effect of neutralizing antibodies, this molecule behaves as a small organic neutralizing compound that may prove to have valuable pharmacological and therapeutic potential.


Asunto(s)
Quimiocina CXCL12/metabolismo , Regulación de la Expresión Génica , Calcio/metabolismo , Calorimetría , Línea Celular , Proliferación Celular , Chalconas/metabolismo , Quimiocina CCL5/metabolismo , Quimiocina CXCL12/fisiología , Humanos , Inflamación , Ligandos , Unión Proteica , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo , Espectrometría de Fluorescencia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA