Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Hyperthermia ; 40(1): 2272578, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37879635

RESUMEN

PURPOSE: This study aimed to assess the quality of the lucite cone applicator (LCA), the standard applicator for superficial hyperthermia at the Erasmus MC Cancer Institute, using the most recent quality assurance guidelines, thus verifying their feasibility. MATERIALS AND METHODS: The assessment was conducted on each of the six LCAs available for clinical treatments. The temperature distribution was evaluated using an infrared camera across different layers of a fat-muscle mimicking phantom. The maximum temperature increase, thermal effective penetration depth (TEPD), and thermal effective field size (TEFS) were used as quality metrics. The experimental results were validated through comparison with simulated results, using a canonical phantom model and a realistic phantom model segmented from CT imaging. RESULTS: A maximum temperature increase above 6 °C at 2 cm depth in the fat-muscle phantom for all the experiments was found. A mean negative difference between simulated and experimental data was of 1.3 °C when using the canonical phantom model. This value decreased to a mean negative difference of 0.4 °C when using the realistic model. Simulated and measured TEPD showed good agreement for both in silico scenarios, while discrepancies were present for TEFS. CONCLUSIONS: The LCAs passed all QA guidelines requirements for superficial hyperthermia delivery when used singularly or in an array configuration. A further characterization of parameters such as antenna efficiency and heat transfer coefficients would be beneficial for translating experimental results to simulated values. Implementing the QA guidelines was time-consuming and demanding, requiring careful preparation and correct setup of antenna elements.


Asunto(s)
Hipertermia Inducida , Neoplasias , Humanos , Polimetil Metacrilato , Calefacción , Hipertermia Inducida/métodos , Temperatura , Neoplasias/terapia , Hipertermia
2.
Int J Hyperthermia ; 39(1): 1421-1439, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36396127

RESUMEN

BACKGROUND: A necessary precondition for a successful microwave hyperthermia (HT) treatment delivered by phased arrays is the ability of the HT applicator to selectively raise the temperature of the entire tumor volume. SAR-based treatment plan (HTP) optimization methods exploit the correlation between specific absorption rate (SAR) and temperature increase in order to determine the set of steering parameters for optimal focusing, while allowing for lower model complexity. Several cost functions have been suggested in the past for this optimization problem. However, their correlation with high and homogeneous tumor temperatures remains sub-optimal in many cases. Previously, we proposed the hot-to-cold spot quotient (HCQ) as a novel cost function for SAR-based HTP optimization and showed its potential to address these issues. MATERIALS AND METHODS: In this work, we validate the HCQ on a standard ESHO patient repository within single and multi-frequency contexts. We verify its correlation with clinical SAR and temperature indexes, and compare it to HTPs obtained using a commonly accepted cost-function for SAR-based HTP (hot-spot to target quotient, HTQ). RESULTS AND DISCUSSION: The results show that low HCQ values produce better SAR (TC50, TC75) and temperature metrics (T50, T90) than HTQ in most patient models and frequency settings. For the deep-seated tumors, the correlation between the clinical indicators and 1/HCQ is more favorable than the correlation exhibited by 1/HTQ. CONCLUSION: The validation confirms the ability of HCQ to promote target coverage and hot-spot suppression in SAR-based HTP optimization, resulting in higher SAR and temperature indexes for deep-seated tumors.


Asunto(s)
Hipertermia Inducida , Neoplasias , Humanos , Microondas/uso terapéutico , Hipertermia Inducida/métodos , Hipertermia , Frío , Neoplasias/terapia
3.
Int J Hyperthermia ; 38(1): 1425-1442, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34581246

RESUMEN

BACKGROUND: The success of cancer hyperthermia (HT) treatments is strongly dependent on the temperatures achieved in the tumor and healthy tissues as it correlates with treatment efficacy and safety, respectively. Hyperthermia treatment planning (HTP) simulations have become pivotal for treatment optimization due to the possibility for pretreatment planning, optimization and decision making, as well as real-time treatment guidance. MATERIALS AND METHODS: The same computational methods deployed in HTP are also used for in silico studies. These are of great relevance for the development of new HT devices and treatment approaches. To aid this work, 3 D patient models have been recently developed and made available for the HT community. Unfortunately, there is no consensus regarding tissue properties, simulation settings, and benchmark applicators, which significantly influence the clinical relevance of computational outcomes. RESULTS AND DISCUSSION: Herein, we propose a comprehensive set of applicator benchmarks, efficacy and safety optimization algorithms, simulation settings and clinical parameters, to establish benchmarks for method comparison and code verification, to provide guidance, and in view of the 2021 ESHO Grand Challenge (Details on the ESHO grand challenge on HTP will be provided at https://www.esho.info/). CONCLUSION: We aim to establish guidelines to promote standardization within the hyperthermia community such that novel approaches can quickly prove their benefit as quickly as possible in clinically relevant simulation scenarios. This paper is primarily focused on radiofrequency and microwave hyperthermia but, since 3 D simulation studies on heating with ultrasound are now a reality, guidance as well as a benchmark for ultrasound-based hyperthermia are also included.


Asunto(s)
Hipertermia Inducida , Neoplasias , Benchmarking , Simulación por Computador , Humanos , Hipertermia , Neoplasias/terapia
4.
Int J Hyperthermia ; 34(7): 910-917, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29658357

RESUMEN

PURPOSE: Tumor response and treatment toxicity are related to minimum and maximum tissue temperatures during hyperthermia, respectively. Using a large set of clinical data, we analyzed the number of sensors required to adequately monitor skin temperature during superficial hyperthermia treatment of breast cancer patients. METHODS: Hyperthermia treatments monitored with >60 stationary temperature sensors were selected from a database of patients with recurrent breast cancer treated with re-irradiation (23 × 2 Gy) and hyperthermia using single 434 MHz applicators (effective field size 351-396 cm2). Reduced temperature monitoring schemes involved randomly selected subsets of stationary skin sensors, and another subset simulating continuous thermal mapping of the skin. Temperature differences (ΔT) between subsets and complete sets of sensors were evaluated in terms of overall minimum (Tmin) and maximum (Tmax) temperature, as well as T90 and T10. RESULTS: Eighty patients were included yielding a total of 400 hyperthermia sessions. Median ΔT was <0.01 °C for T90, its 95% confidence interval (95%CI) decreased to ≤0.5 °C when >50 sensors were used. Subsets of <10 sensors result in underestimation of Tmax up to -2.1 °C (ΔT 95%CI), which decreased to -0.5 °C when >50 sensors were used. Thermal profiles (8-21 probes) yielded a median ΔT < 0.01 °C for T90 and Tmax, with a 95%CI of -0.2 °C and 0.4 °C, respectively. The detection rate of Tmax ≥43 °C is ≥85% while using >50 stationary sensors or thermal profiles. CONCLUSIONS: Adequate coverage of the skin temperature distribution during superficial hyperthermia treatment requires the use of >50 stationary sensors per 400 cm2 applicator. Thermal mapping is a valid alternative.


Asunto(s)
Hipertermia Inducida/efectos adversos , Radioterapia/métodos , Femenino , Humanos , Hipertermia Inducida/métodos , Masculino , Temperatura Cutánea
5.
Strahlenther Onkol ; 193(5): 351-366, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28251250

RESUMEN

Quality assurance (QA) guidelines are essential to provide uniform execution of clinical trials with uniform quality hyperthermia treatments. This document outlines the requirements for appropriate QA of all current superficial heating equipment including electromagnetic (radiative and capacitive), ultrasound, and infrared heating techniques. Detailed instructions are provided how to characterize and document the performance of these hyperthermia applicators in order to apply reproducible hyperthermia treatments of uniform high quality. Earlier documents used specific absorption rate (SAR) to define and characterize applicator performance. In these QA guidelines, temperature rise is the leading parameter for characterization of applicator performance. The intention of this approach is that characterization can be achieved with affordable equipment and easy-to-implement procedures. These characteristics are essential to establish for each individual applicator the specific maximum size and depth of tumors that can be heated adequately. The guidelines in this document are supplemented with a second set of guidelines focusing on the clinical application. Both sets of guidelines were developed by the European Society for Hyperthermic Oncology (ESHO) Technical Committee with participation of senior Society of Thermal Medicine (STM) members and members of the Atzelsberg Circle.


Asunto(s)
Ensayos Clínicos como Asunto/instrumentación , Ensayos Clínicos como Asunto/normas , Hipertermia Inducida/instrumentación , Hipertermia Inducida/normas , Guías de Práctica Clínica como Asunto , Garantía de la Calidad de Atención de Salud/normas , Diseño de Equipo , Análisis de Falla de Equipo/métodos , Análisis de Falla de Equipo/normas , Alemania , Rayos Infrarrojos , Internacionalidad , Microondas
6.
Cancers (Basel) ; 15(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36900238

RESUMEN

Deep microwave hyperthermia applicators are typically designed as narrow-band conformal antenna arrays with equally spaced elements, arranged in one or more rings. This solution, while adequate for most body regions, might be sub-optimal for brain treatments. The introduction of ultra-wide-band semi-spherical applicators, with elements arranged around the head and not necessarily aligned, has the potential to enhance the selective thermal dose delivery in this challenging anatomical region. However, the additional degrees of freedom in this design make the problem non-trivial. We address this by treating the antenna arrangement as a global SAR-based optimization process aiming at maximizing target coverage and hot-spot suppression in a given patient. To enable the quick evaluation of a certain arrangement, we propose a novel E-field interpolation technique which calculates the field generated by an antenna at any location around the scalp from a limited number of initial simulations. We evaluate the approximation error against full array simulations. We demonstrate the design technique in the optimization of a helmet applicator for the treatment of a medulloblastoma in a paediatric patient. The optimized applicator achieves 0.3 °C higher T90 than a conventional ring applicator with the same number of elements.

7.
Biomed Phys Eng Express ; 7(6)2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34517355

RESUMEN

Tissue mimicking phantom materials with thermal and dielectric equivalence are vital for the development of microwave diagnostics and treatment. The current phantoms representing fat tissue are challenged by mechanical integrity at relevant temperatures coupled with complex production protocols. We have employed two types of nanocellulose (cellulose nanocrystals and oxidized cellulose nanocrystals) as reinforcement in gelatin stabilized emulsions for mimicking fat tissue. The nanocellulose-gelatin stabilized emulsions were evaluated for their dielectric properties, the moduli-temperature dependence using small deformation rheology, stress-strain behavior using large deformation, and their compliance to quality assurance guidelines for superficial hyperthermia. All emulsions had low permittivity and conductivity within the lower microwave frequency band, accompanied by fat equivalent thermal properties. Small deformation rheology showed reduced temperature dependence of the moduli upon addition of nanocellulose, independent of type. The cellulose nanocrystals gelatin reinforced emulsion complied with the quality assurance guidelines. Hence, we demonstrate that the addition of cellulose nanocrystals to gelatin stabilized emulsions has the potential to be used as fat phantoms for the development of microwave diagnostics and treatment.


Asunto(s)
Microondas , Celulosa , Emulsiones , Gelatina , Hipertermia Inducida
8.
Int J Hyperthermia ; 26(2): 185-97, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20146572

RESUMEN

PURPOSE: To describe the design, analysis and evaluation of a new antenna array system for microwave hyperthermia. The proposed antenna array was evaluated by the focusing method based on the time-reversal principle. MATERIALS AND METHODS: Power absorption distributions in a cylindrical homogeneous and inhomogeneous phantom were calculated for the frequency range 500-900 MHz. Two set-ups with 12 and 16 antennas were analysed by comparing the changes in focusing areas enclosed by the 50%, 75% and 90% iso-SAR contours. For a more quantitative evaluation of the results the average power absorption ratio and remaining tissue maximum index were calculated. RESULTS: The sharpest focusing area in the centre of the phantom, 151 mm(2) (9 x 20 mm) (90% iso-SAR), was obtained by using 16 antennas at frequency 900 MHz. The largest focusing area of 280 mm(2) (13 x 24 mm) (90% iso-SAR) was obtained by using 16 antennas at 500 MHz. The SAR focus was steered in the desired radial direction obtaining a 43 mm(2) 90% iso-SAR focus-width in a semi-three-dimensional neck phantom. The results showed qualitative agreement between three dimensions (3D) and two dimensions (2D) for the performance indicators. CONCLUSIONS: The conducted study confirms the feasibility of the time-reversal-based focusing methods for microwave hyperthermia. The proposed system shows promise and is suitable for further development in the treatment of head and neck tumours, and extremities application.


Asunto(s)
Diseño de Equipo , Hipertermia Inducida , Fantasmas de Imagen , Humanos , Hipertermia Inducida/instrumentación , Hipertermia Inducida/métodos , Microondas
9.
Cancers (Basel) ; 11(8)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443246

RESUMEN

Hyperthermia therapy (40-44 °C) is a promising option to increase efficacy of radiotherapy/chemotherapy for brain tumours, in particular paediatric brain tumours. The Chalmers Hyperthermia Helmet is developed for this purpose. Hyperthermia treatment planning is required for treatment optimisation, but current planning systems do not involve a physically correct model of cerebrospinal fluid (CSF). This study investigates the necessity of fluid modelling for treatment planning. We made treatments plans using the Helmet for both pre-operative and post-operative cases, comparing temperature distributions predicted with three CSF models: a convective "fluid" model, a non-convective "solid" CSF model, and CSF models with increased effective thermal conductivity ("high-k"). Treatment plans were evaluated by T90, T50 and T10 target temperatures and treatment-limiting hot spots. Adequate heating is possible with the helmet. In the pre-operative case, treatment plan quality was comparable for all three models. In the post-operative case, the high-k models were more accurate than the solid model. Predictions to within ±1 °C were obtained by a 10-20-fold increased effective thermal conductivity. Accurate modelling of the temperature in CSF requires fluid dynamics, but modelling CSF as a solid with enhanced effective thermal conductivity might be a practical alternative for a convective fluid model for many applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA