Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 159(1): 200-214, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25259927

RESUMEN

Invertebrate model systems are powerful tools for studying human disease owing to their genetic tractability and ease of screening. We conducted a mosaic genetic screen of lethal mutations on the Drosophila X chromosome to identify genes required for the development, function, and maintenance of the nervous system. We identified 165 genes, most of whose function has not been studied in vivo. In parallel, we investigated rare variant alleles in 1,929 human exomes from families with unsolved Mendelian disease. Genes that are essential in flies and have multiple human homologs were found to be likely to be associated with human diseases. Merging the human data sets with the fly genes allowed us to identify disease-associated mutations in six families and to provide insights into microcephaly associated with brain dysgenesis. This bidirectional synergism between fly genetics and human genomics facilitates the functional annotation of evolutionarily conserved genes involved in human health.


Asunto(s)
Enfermedad/genética , Drosophila melanogaster/genética , Pruebas Genéticas , Patrón de Herencia , Interferencia de ARN , Animales , Modelos Animales de Enfermedad , Humanos , Cromosoma X
2.
Mol Cell ; 81(22): 4663-4676.e8, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34637754

RESUMEN

The heterogeneous family of complexes comprising Polycomb repressive complex 1 (PRC1) is instrumental for establishing facultative heterochromatin that is repressive to transcription. However, two PRC1 species, ncPRC1.3 and ncPRC1.5, are known to comprise novel components, AUTS2, P300, and CK2, that convert this repressive function to that of transcription activation. Here, we report that individuals harboring mutations in the HX repeat domain of AUTS2 exhibit defects in AUTS2 and P300 interaction as well as a developmental disorder reflective of Rubinstein-Taybi syndrome, which is mainly associated with a heterozygous pathogenic variant in CREBBP/EP300. Moreover, the absence of AUTS2 or mutation in its HX repeat domain gives rise to misregulation of a subset of developmental genes and curtails motor neuron differentiation of mouse embryonic stem cells. The transcription factor nuclear respiratory factor 1 (NRF1) has a novel and integral role in this neurodevelopmental process, being required for ncPRC1.3 recruitment to chromatin.


Asunto(s)
Encéfalo/metabolismo , Proteína de Unión a CREB/genética , Proteínas del Citoesqueleto/metabolismo , Proteína p300 Asociada a E1A/genética , Células Madre Embrionarias/metabolismo , Factor Nuclear 1 de Respiración/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Cromatina/química , Femenino , Genómica , Células HEK293 , Heterocigoto , Humanos , Masculino , Ratones , Neuronas/metabolismo , Unión Proteica , Dominios Proteicos , Proteómica , Activación Transcripcional
3.
Proc Natl Acad Sci U S A ; 120(4): e2209983120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36669109

RESUMEN

TMEM161B encodes an evolutionarily conserved widely expressed novel 8-pass transmembrane protein of unknown function in human. Here we identify TMEM161B homozygous hypomorphic missense variants in our recessive polymicrogyria (PMG) cohort. Patients carrying TMEM161B mutations exhibit striking neocortical PMG and intellectual disability. Tmem161b knockout mice fail to develop midline hemispheric cleavage, whereas knock-in of patient mutations and patient-derived brain organoids show defects in apical cell polarity and radial glial scaffolding. We found that TMEM161B modulates actin filopodia, functioning upstream of the Rho-GTPase CDC42. Our data link TMEM161B with human PMG, likely regulating radial glia apical polarity during neocortical development.


Asunto(s)
Neocórtex , Animales , Humanos , Ratones , Células Ependimogliales , Ratones Noqueados
4.
Genes Dev ; 32(11-12): 763-780, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29899142

RESUMEN

Proper organization and orderly mitosis of radial glial progenitors (RGPs) drive the formation of a laminated mammalian cortex in the correct size. However, the molecular underpinnings of the intricate process remain largely unclear. Here we show that RGP behavior and cortical development are controlled by temporally distinct actions of partitioning-defective 3 (PARD3) in concert with dynamic HIPPO signaling. RGPs lacking PARD3 exhibit developmental stage-dependent abnormal switches in division mode, resulting in an initial overproduction of RGPs located largely outside the ventricular zone at the expense of deep-layer neurons. Ectopically localized RGPs subsequently undergo accelerated and excessive neurogenesis, leading to the formation of an enlarged cortex with massive heterotopia and increased seizure susceptibility. Simultaneous removal of HIPPO pathway effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) suppresses cortical enlargement and heterotopia formation. These results define a dynamic regulatory program of mammalian cortical development and highlight a progenitor origin of megalencephaly with ribbon heterotopia and epilepsy.


Asunto(s)
Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Corteza Cerebral/fisiopatología , Convulsiones/genética , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Corteza Cerebral/fisiología , Células Ependimogliales/fisiología , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Convulsiones/fisiopatología , Transducción de Señal/genética , Células Madre/fisiología , Transactivadores , Proteínas Señalizadoras YAP
5.
Am J Hum Genet ; 109(11): 2068-2079, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36283405

RESUMEN

Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Lisencefalia , Malformaciones del Sistema Nervioso , Humanos , Animales , Ratones , Lisencefalia/genética , Alelos , Tubulina (Proteína)/genética , Fenotipo , Malformaciones del Sistema Nervioso/genética , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética
6.
Cell ; 142(2): 203-17, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20637498

RESUMEN

N-linked glycosylation is the most frequent modification of secreted and membrane-bound proteins in eukaryotic cells, disruption of which is the basis of the congenital disorders of glycosylation (CDGs). We describe a new type of CDG caused by mutations in the steroid 5alpha-reductase type 3 (SRD5A3) gene. Patients have mental retardation and ophthalmologic and cerebellar defects. We found that SRD5A3 is necessary for the reduction of the alpha-isoprene unit of polyprenols to form dolichols, required for synthesis of dolichol-linked monosaccharides, and the oligosaccharide precursor used for N-glycosylation. The presence of residual dolichol in cells depleted for this enzyme suggests the existence of an unexpected alternative pathway for dolichol de novo biosynthesis. Our results thus suggest that SRD5A3 is likely to be the long-sought polyprenol reductase and reveal the genetic basis of one of the earliest steps in protein N-linked glycosylation.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Anomalías Múltiples/metabolismo , Dolicoles/metabolismo , Discapacidad Intelectual/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Animales , Butadienos/metabolismo , Consanguinidad , Embrión de Mamíferos/metabolismo , Estudio de Asociación del Genoma Completo , Glicosilación , Hemiterpenos/metabolismo , Humanos , Proteínas de la Membrana/genética , Ratones , Pentanos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Respuesta de Proteína Desplegada
7.
Am J Hum Genet ; 108(5): 951-961, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33894126

RESUMEN

The collapsin response mediator protein (CRMP) family proteins are intracellular mediators of neurotrophic factors regulating neurite structure/spine formation and are essential for dendrite patterning and directional axonal pathfinding during brain developmental processes. Among this family, CRMP5/DPYSL5 plays a significant role in neuronal migration, axonal guidance, dendrite outgrowth, and synapse formation by interacting with microtubules. Here, we report the identification of missense mutations in DPYSL5 in nine individuals with brain malformations, including corpus callosum agenesis and/or posterior fossa abnormalities, associated with variable degrees of intellectual disability. A recurrent de novo p.Glu41Lys variant was found in eight unrelated patients, and a p.Gly47Arg variant was identified in one individual from the first family reported with Ritscher-Schinzel syndrome. Functional analyses of the two missense mutations revealed impaired dendritic outgrowth processes in young developing hippocampal primary neuronal cultures. We further demonstrated that these mutations, both located in the same loop on the surface of DPYSL5 monomers and oligomers, reduced the interaction of DPYSL5 with neuronal cytoskeleton-associated proteins MAP2 and ßIII-tubulin. Our findings collectively indicate that the p.Glu41Lys and p.Gly47Arg variants impair DPYSL5 function on dendritic outgrowth regulation by preventing the formation of the ternary complex with MAP2 and ßIII-tubulin, ultimately leading to abnormal brain development. This study adds DPYSL5 to the list of genes implicated in brain malformation and in neurodevelopmental disorders.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Cerebelo/anomalías , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Adulto , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Cerebelo/diagnóstico por imagen , Niño , Preescolar , Femenino , Humanos , Hidrolasas/química , Hidrolasas/genética , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/genética , Masculino , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Trastornos del Neurodesarrollo/diagnóstico por imagen , Tubulina (Proteína)/metabolismo , Adulto Joven
8.
Am J Hum Genet ; 108(1): 8-15, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33417889

RESUMEN

The delineation of disease entities is complex, yet recent advances in the molecular characterization of diseases provide opportunities to designate diseases in a biologically valid manner. Here, we have formalized an approach to the delineation of Mendelian genetic disorders that encompasses two distinct but inter-related concepts: (1) the gene that is mutated and (2) the phenotypic descriptor, preferably a recognizably distinct phenotype. We assert that only by a combinatorial or dyadic approach taking both of these attributes into account can a unitary, distinct genetic disorder be designated. We propose that all Mendelian disorders should be designated as "GENE-related phenotype descriptor" (e.g., "CFTR-related cystic fibrosis"). This approach to delineating and naming disorders reconciles the complexity of gene-to-phenotype relationships in a simple and clear manner yet communicates the complexity and nuance of these relationships.


Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Genómica/métodos , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Genotipo , Humanos , Mutación/genética , Fenotipo
9.
J Pediatr ; 272: 114101, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759778

RESUMEN

OBJECTIVE: To develop consensus on diagnostic criteria for LUMBAR syndrome, the association of segmental infantile hemangiomas that affect the Lower body with Urogenital anomalies, Ulceration, spinal cord Malformations, Bony defects, Anorectal malformations, Arterial anomalies and/or Renal anomalies. STUDY DESIGN: These diagnostic criteria were developed by an expert multidisciplinary and multi-institutional team based on analysis of peer-reviewed data, followed by electronic-Delphi consensus of a panel of 61 international pediatric specialists. RESULTS: After 2 Delphi rounds, a 92% or higher level of agreement was reached for each Delphi statement. 98% of panelists agreed with the diagnostic criteria, and 100% agreed the criteria would be useful in clinical practice. The diagnosis of LUMBAR requires the presence of a segmental, or patterned, infantile hemangioma of the lumbosacral, sacrococcygeal, or pelvic cutaneous regions plus one additional criterion of the urogenital, spinal, bony, anorectal, arterial, or renal organ systems. CONCLUSIONS: These diagnostic criteria will enhance clinical care by improving screening, detection, and overall awareness of this poorly understood neurocutaneous disorder. The criteria can be utilized by a wide variety of pediatric subspecialists. In addition, formal criteria will improve phenotypic uniformity among LUMBAR syndrome cohorts and a patient registry, allowing investigators to assess clinical features, long-term outcomes, and results of genetic sequencing in a standardized manner. Finally, these criteria will serve as a starting point for prospective studies to establish formal screening and management guidelines.

10.
Am J Med Genet A ; 194(3): e63416, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37933701

RESUMEN

Schizophrenia (SCZ) is a well-studied neuropsychiatric condition that has been shown to have a high degree of genetic heritability. Still, little data on the specific genetic risk variants associated with the disease exists. Classification of the SCZ phenotype into SCZ-related endophenotypes is a promising methodology to parse out and elucidate the specific genetic risk variants for each. Here, we present a series of 17 previously reported individuals and a new proband with similar SCZ-related neuropsychiatric characteristics and shared brain imaging findings. Unsurprisingly, these individuals shared classic psychiatric features of SCZ. Interestingly, we also identified shared neuropsychiatric features in this series of individuals that had not been highlighted previously. A consistently decreased IQ, memory impairment, sleep and speech disturbances, and attention deficits were commonly reported findings. The brain imaging findings among these individuals also consistently showed posterior vermis predominant cerebellar hypoplasia (CBLH-V). Most individuals' diagnoses were initially described as Dandy-Walker malformation; however, our independent review of imaging suggests a more consistent pattern of posterior vermis predominant cerebellar hypoplasia rather than true Dandy-Walker malformation. While the specific genetic risk variants for this endophenotype are yet to be described, the aim of this paper is to present the shared neuropsychiatric features and consistent, symmetrical brain image findings which suggest that this subset of individuals comprises an endophenotype of SCZ with a high genetic solve rate.


Asunto(s)
Cerebelo/anomalías , Síndrome de Dandy-Walker , Malformaciones del Sistema Nervioso , Trastornos Psicóticos , Esquizofrenia , Humanos , Síndrome de Dandy-Walker/diagnóstico , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Cerebelo/diagnóstico por imagen , Discapacidades del Desarrollo
11.
Brain ; 146(4): 1357-1372, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36074901

RESUMEN

The vacuolar H+-ATPase is an enzymatic complex that functions in an ATP-dependent manner to pump protons across membranes and acidify organelles, thereby creating the proton/pH gradient required for membrane trafficking by several different types of transporters. We describe heterozygous point variants in ATP6V0C, encoding the c-subunit in the membrane bound integral domain of the vacuolar H+-ATPase, in 27 patients with neurodevelopmental abnormalities with or without epilepsy. Corpus callosum hypoplasia and cardiac abnormalities were also present in some patients. In silico modelling suggested that the patient variants interfere with the interactions between the ATP6V0C and ATP6V0A subunits during ATP hydrolysis. Consistent with decreased vacuolar H+-ATPase activity, functional analyses conducted in Saccharomyces cerevisiae revealed reduced LysoSensor fluorescence and reduced growth in media containing varying concentrations of CaCl2. Knockdown of ATP6V0C in Drosophila resulted in increased duration of seizure-like behaviour, and the expression of selected patient variants in Caenorhabditis elegans led to reduced growth, motor dysfunction and reduced lifespan. In summary, this study establishes ATP6V0C as an important disease gene, describes the clinical features of the associated neurodevelopmental disorder and provides insight into disease mechanisms.


Asunto(s)
Epilepsia , ATPasas de Translocación de Protón Vacuolares , Humanos , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Epilepsia/genética , Adenosina Trifosfato
13.
Genet Med ; 25(8): 100856, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37092537

RESUMEN

PURPOSE: Dominant variants in the retinoic acid receptor beta (RARB) gene underlie a syndromic form of microphthalmia, known as MCOPS12, which is associated with other birth anomalies and global developmental delay with spasticity and/or dystonia. Here, we report 25 affected individuals with 17 novel pathogenic or likely pathogenic variants in RARB. This study aims to characterize the functional impact of these variants and describe the clinical spectrum of MCOPS12. METHODS: We used in vitro transcriptional assays and in silico structural analysis to assess the functional relevance of RARB variants in affecting the normal response to retinoids. RESULTS: We found that all RARB variants tested in our assays exhibited either a gain-of-function or a loss-of-function activity. Loss-of-function variants disrupted RARB function through a dominant-negative effect, possibly by disrupting ligand binding and/or coactivators' recruitment. By reviewing clinical data from 52 affected individuals, we found that disruption of RARB is associated with a more variable phenotype than initially suspected, with the absence in some individuals of cardinal features of MCOPS12, such as developmental eye anomaly or motor impairment. CONCLUSION: Our study indicates that pathogenic variants in RARB are functionally heterogeneous and associated with extensive clinical heterogeneity.


Asunto(s)
Microftalmía , Receptores de Ácido Retinoico , Humanos , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Retinoides
14.
Brain ; 145(9): 3274-3287, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35769015

RESUMEN

Reelin, a large extracellular protein, plays several critical roles in brain development and function. It is encoded by RELN, first identified as the gene disrupted in the reeler mouse, a classic neurological mutant exhibiting ataxia, tremors and a 'reeling' gait. In humans, biallelic variants in RELN have been associated with a recessive lissencephaly variant with cerebellar hypoplasia, which matches well with the homozygous mouse mutant that has abnormal cortical structure, small hippocampi and severe cerebellar hypoplasia. Despite the large size of the gene, only 11 individuals with RELN-related lissencephaly with cerebellar hypoplasia from six families have previously been reported. Heterozygous carriers in these families were briefly reported as unaffected, although putative loss-of-function variants are practically absent in the population (probability of loss of function intolerance = 1). Here we present data on seven individuals from four families with biallelic and 13 individuals from seven families with monoallelic (heterozygous) variants of RELN and frontotemporal or temporal-predominant lissencephaly variant. Some individuals with monoallelic variants have moderate frontotemporal lissencephaly, but with normal cerebellar structure and intellectual disability with severe behavioural dysfunction. However, one adult had abnormal MRI with normal intelligence and neurological profile. Thorough literature analysis supports a causal role for monoallelic RELN variants in four seemingly distinct phenotypes including frontotemporal lissencephaly, epilepsy, autism and probably schizophrenia. Notably, we observed a significantly higher proportion of loss-of-function variants in the biallelic compared to the monoallelic cohort, where the variant spectrum included missense and splice-site variants. We assessed the impact of two canonical splice-site variants observed as biallelic or monoallelic variants in individuals with moderately affected or normal cerebellum and demonstrated exon skipping causing in-frame loss of 46 or 52 amino acids in the central RELN domain. Previously reported functional studies demonstrated severe reduction in overall RELN secretion caused by heterozygous missense variants p.Cys539Arg and p.Arg3207Cys associated with lissencephaly suggesting a dominant-negative effect. We conclude that biallelic variants resulting in complete absence of RELN expression are associated with a consistent and severe phenotype that includes cerebellar hypoplasia. However, reduced expression of RELN remains sufficient to maintain nearly normal cerebellar structure. Monoallelic variants are associated with incomplete penetrance and variable expressivity even within the same family and may have dominant-negative effects. Reduced RELN secretion in heterozygous individuals affects only cortical structure whereas the cerebellum remains intact. Our data expand the spectrum of RELN-related neurodevelopmental disorders ranging from lethal brain malformations to adult phenotypes with normal brain imaging.


Asunto(s)
Lisencefalia , Proteína Reelina , Adulto , Cerebelo/anomalías , Niño , Discapacidades del Desarrollo/genética , Humanos , Lisencefalia/complicaciones , Mutación , Malformaciones del Sistema Nervioso , Proteína Reelina/genética
15.
Brain ; 145(3): 925-938, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35355055

RESUMEN

Focal malformations of cortical development including focal cortical dysplasia, hemimegalencephaly and megalencephaly, are a spectrum of neurodevelopmental disorders associated with brain overgrowth, cellular and architectural dysplasia, intractable epilepsy, autism and intellectual disability. Importantly, focal cortical dysplasia is the most common cause of focal intractable paediatric epilepsy. Gain and loss of function variants in the PI3K-AKT-MTOR pathway have been identified in this spectrum, with variable levels of mosaicism and tissue distribution. In this study, we performed deep molecular profiling of common PI3K-AKT-MTOR pathway variants in surgically resected tissues using droplet digital polymerase chain reaction (ddPCR), combined with analysis of key phenotype data. A total of 159 samples, including 124 brain tissue samples, were collected from 58 children with focal malformations of cortical development. We designed an ultra-sensitive and highly targeted molecular diagnostic panel using ddPCR for six mutational hotspots in three PI3K-AKT-MTOR pathway genes, namely PIK3CA (p.E542K, p.E545K, p.H1047R), AKT3 (p.E17K) and MTOR (p.S2215F, p.S2215Y). We quantified the level of mosaicism across all samples and correlated genotypes with key clinical, neuroimaging and histopathological data. Pathogenic variants were identified in 17 individuals, with an overall molecular solve rate of 29.31%. Variant allele fractions ranged from 0.14 to 22.67% across all mutation-positive samples. Our data show that pathogenic MTOR variants are mostly associated with focal cortical dysplasia, whereas pathogenic PIK3CA variants are more frequent in hemimegalencephaly. Further, the presence of one of these hotspot mutations correlated with earlier onset of epilepsy. However, levels of mosaicism did not correlate with the severity of the cortical malformation by neuroimaging or histopathology. Importantly, we could not identify these mutational hotspots in other types of surgically resected epileptic lesions (e.g. polymicrogyria or mesial temporal sclerosis) suggesting that PI3K-AKT-MTOR mutations are specifically causal in the focal cortical dysplasia-hemimegalencephaly spectrum. Finally, our data suggest that ultra-sensitive molecular profiling of the most common PI3K-AKT-MTOR mutations by targeted sequencing droplet digital polymerase chain reaction is an effective molecular approach for these disorders with a good diagnostic yield when paired with neuroimaging and histopathology.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Hemimegalencefalia , Malformaciones del Desarrollo Cortical , Encéfalo/patología , Niño , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Epilepsia Refractaria/metabolismo , Epilepsia/genética , Hemimegalencefalia/genética , Hemimegalencefalia/metabolismo , Hemimegalencefalia/patología , Humanos , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/genética , Mutación , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
16.
J Neurophysiol ; 128(1): 40-61, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583973

RESUMEN

We identified six novel de novo human KCNQ5 variants in children with motor/language delay, intellectual disability (ID), and/or epilepsy by whole exome sequencing. These variants, comprising two nonsense and four missense alterations, were functionally characterized by electrophysiology in HEK293/CHO cells, together with four previously reported KCNQ5 missense variants (Lehman A, Thouta S, Mancini GM, Naidu S, van Slegtenhorst M, McWalter K, Person R, Mwenifumbo J, Salvarinova R; CAUSES Study; EPGEN Study; Guella I, McKenzie MB, Datta A, Connolly MB, Kalkhoran SM, Poburko D, Friedman JM, Farrer MJ, Demos M, Desai S, Claydon T. Am J Hum Genet 101: 65-74, 2017). Surprisingly, all eight missense variants resulted in gain of function (GOF) due to hyperpolarized voltage dependence of activation or slowed deactivation kinetics, whereas the two nonsense variants were confirmed to be loss of function (LOF). One severe GOF allele (P369T) was tested and found to extend a dominant GOF effect to heteromeric KCNQ5/3 channels. Clinical presentations were associated with altered KCNQ5 channel gating: milder presentations with LOF or smaller GOF shifts in voltage dependence [change in voltage at half-maximal conduction (ΔV50) = ∼-15 mV] and severe presentations with larger GOF shifts in voltage dependence (ΔV50 = ∼-30 mV). To examine LOF pathogenicity, two Kcnq5 LOF mouse lines were created with CRISPR/Cas9. Both lines exhibited handling- and thermal-induced seizures and abnormal cortical EEGs consistent with epileptiform activity. Our study thus provides evidence for in vivo KCNQ5 LOF pathogenicity and strengthens the contribution of both LOF and GOF mutations to global pediatric neurological impairment, including ID/epilepsy.NEW & NOTEWORTHY Six novel de novo human KCNQ5 variants were identified from children with neurodevelopmental delay, intellectual disability, and/or epilepsy. Expression of these variants along with four previously reported KCNQ5 variants from a similar cohort revealed GOF potassium channels, negatively shifted in V50 of activation and/or delayed deactivation kinetics. GOF is extended to KCNQ5/3 heteromeric channels, making these the predominant channels affected in heterozygous de novo patients. Kcnq5 LOF mice exhibited seizures, consistent with in vivo pathogenicity.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Animales , Niño , Cricetinae , Cricetulus , Epilepsia/genética , Células HEK293 , Humanos , Discapacidad Intelectual/genética , Canales de Potasio KCNQ , Ratones , Mutación Missense , Convulsiones
17.
Am J Hum Genet ; 104(5): 968-976, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31031011

RESUMEN

The role of somatic genetic variants in the pathogenesis of intracranial-aneurysm formation is unknown. We identified a 23-year-old man with progressive, right-sided intracranial aneurysms, ipsilateral to an impressive cutaneous phenotype. The index individual underwent a series of genetic evaluations for known connective-tissue disorders, but the evaluations were unrevealing. Paired-sample exome sequencing between blood and fibroblasts derived from the diseased areas detected a single novel variant predicted to cause a p.Tyr562Cys (g.149505130T>C [GRCh37/hg19]; c.1685A>G) change within the platelet-derived growth factor receptor ß gene (PDGFRB), a juxtamembrane-coding region. Variant-allele fractions ranged from 18.75% to 53.33% within histologically abnormal tissue, suggesting post-zygotic or somatic mosaicism. In an independent cohort of aneurysm specimens, we detected somatic-activating PDGFRB variants in the juxtamembrane domain or the kinase activation loop in 4/6 fusiform aneurysms (and 0/38 saccular aneurysms; Fisher's exact test, p < 0.001). PDGFRB-variant, but not wild-type, patient cells were found to have overactive auto-phosphorylation with downstream activation of ERK, SRC, and AKT. The expression of discovered variants demonstrated non-ligand-dependent auto-phosphorylation, responsive to the kinase inhibitor sunitinib. Somatic gain-of-function variants in PDGFRB are a novel mechanism in the pathophysiology of fusiform cerebral aneurysms and suggest a potential role for targeted therapy with kinase inhibitors.


Asunto(s)
Aneurisma/genética , Aneurisma Intracraneal/genética , Mutación , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Aneurisma/patología , Niño , Estudios de Cohortes , Femenino , Humanos , Aneurisma Intracraneal/patología , Masculino , Homología de Secuencia , Adulto Joven
18.
Am J Hum Genet ; 105(4): 844-853, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585108

RESUMEN

Lissencephaly is a severe brain malformation in which failure of neuronal migration results in agyria or pachygyria and in which the brain surface appears unusually smooth. It is often associated with microcephaly, profound intellectual disability, epilepsy, and impaired motor abilities. Twenty-two genes are associated with lissencephaly, accounting for approximately 80% of disease. Here we report on 12 individuals with a unique form of lissencephaly; these individuals come from eight unrelated families and have bi-allelic mutations in APC2, encoding adenomatous polyposis coli protein 2. Brain imaging studies demonstrate extensive posterior predominant lissencephaly, similar to PAFAH1B1-associated lissencephaly, as well as co-occurrence of subcortical heterotopia posterior to the caudate nuclei, "ribbon-like" heterotopia in the posterior frontal region, and dysplastic in-folding of the mesial occipital cortex. The established role of APC2 in integrating the actin and microtubule cytoskeletons to mediate cellular morphological changes suggests shared function with other lissencephaly-encoded cytoskeletal proteins such as α-N-catenin (CTNNA2) and platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1, also known as LIS1). Our findings identify APC2 as a radiographically distinguishable recessive form of lissencephaly.


Asunto(s)
Alelos , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Proteínas del Citoesqueleto/genética , Discapacidades del Desarrollo/genética , Lisencefalia/genética , Femenino , Humanos , Masculino , Linaje
19.
Am J Hum Genet ; 105(2): 413-424, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31327508

RESUMEN

WD40 repeat-containing proteins form a large family of proteins present in all eukaryotes. Here, we identified five pediatric probands with de novo variants in WDR37, which encodes a member of the WD40 repeat protein family. Two probands shared one variant and the others have variants in nearby amino acids outside the WD40 repeats. The probands exhibited shared phenotypes of epilepsy, colobomas, facial dysmorphology reminiscent of CHARGE syndrome, developmental delay and intellectual disability, and cerebellar hypoplasia. The WDR37 protein is highly conserved in vertebrate and invertebrate model organisms and is currently not associated with a human disease. We generated a null allele of the single Drosophila ortholog to gain functional insights and replaced the coding region of the fly gene CG12333/wdr37 with GAL4. These flies are homozygous viable but display severe bang sensitivity, a phenotype associated with seizures in flies. Additionally, the mutant flies fall when climbing the walls of the vials, suggesting a defect in grip strength, and repeat the cycle of climbing and falling. Similar to wall clinging defect, mutant males often lose grip of the female abdomen during copulation. These phenotypes are rescued by using the GAL4 in the CG12333/wdr37 locus to drive the UAS-human reference WDR37 cDNA. The two variants found in three human subjects failed to rescue these phenotypes, suggesting that these alleles severely affect the function of this protein. Taken together, our data suggest that variants in WDR37 underlie a novel syndromic neurological disorder.


Asunto(s)
Trastorno Dismórfico Corporal/patología , Cerebelo/anomalías , Coloboma/patología , Discapacidades del Desarrollo/patología , Epilepsia/patología , Discapacidad Intelectual/patología , Mutación , Malformaciones del Sistema Nervioso/patología , Repeticiones WD40/genética , Adulto , Secuencia de Aminoácidos , Animales , Trastorno Dismórfico Corporal/genética , Cerebelo/patología , Niño , Coloboma/genética , Discapacidades del Desarrollo/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Epilepsia/genética , Femenino , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Malformaciones del Sistema Nervioso/genética , Fenotipo , Homología de Secuencia , Adulto Joven
20.
Am J Hum Genet ; 105(3): 640-657, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31402090

RESUMEN

The identification of genetic variants implicated in human developmental disorders has been revolutionized by second-generation sequencing combined with international pooling of cases. Here, we describe seven individuals who have diverse yet overlapping developmental anomalies, and who all have de novo missense FBXW11 variants identified by whole exome or whole genome sequencing and not reported in the gnomAD database. Their phenotypes include striking neurodevelopmental, digital, jaw, and eye anomalies, and in one individual, features resembling Noonan syndrome, a condition caused by dysregulated RAS signaling. FBXW11 encodes an F-box protein, part of the Skp1-cullin-F-box (SCF) ubiquitin ligase complex, involved in ubiquitination and proteasomal degradation and thus fundamental to many protein regulatory processes. FBXW11 targets include ß-catenin and GLI transcription factors, key mediators of Wnt and Hh signaling, respectively, critical to digital, neurological, and eye development. Structural analyses indicate affected residues cluster at the surface of the loops of the substrate-binding domain of FBXW11, and the variants are predicted to destabilize the protein and/or its interactions. In situ hybridization studies on human and zebrafish embryonic tissues demonstrate FBXW11 is expressed in the developing eye, brain, mandibular processes, and limb buds or pectoral fins. Knockdown of the zebrafish FBXW11 orthologs fbxw11a and fbxw11b resulted in embryos with smaller, misshapen, and underdeveloped eyes and abnormal jaw and pectoral fin development. Our findings support the role of FBXW11 in multiple developmental processes, including those involving the brain, eye, digits, and jaw.


Asunto(s)
Encéfalo/anomalías , Anomalías del Ojo/genética , Dedos/anomalías , Mutación Missense , Fenotipo , Ubiquitina-Proteína Ligasas/genética , Proteínas con Repetición de beta-Transducina/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA