RESUMEN
Understanding carrier trapping in solids has proven key to semiconductor technologies, but observations thus far have relied on ensembles of point defects, where the impact of neighboring traps or carrier screening is often important. Here, we investigate the capture of photogenerated holes by an individual negatively charged nitrogen-vacancy (NV) center in diamond at room temperature. Using an externally gated potential to minimize space-charge effects, we find the capture probability under electric fields of variable sign and amplitude shows an asymmetric-bell-shaped response with maximum at zero voltage. To interpret these observations, we run semiclassical Monte Carlo simulations modeling carrier trapping through a cascade process of phonon emission and obtain electric-field-dependent capture probabilities in good agreement with experiment. Because the mechanisms at play are insensitive to the characteristics of the trap, we anticipate the capture cross sections we observeâlargely exceeding those derived from ensemble measurementsâmay also be present in materials platforms other than diamond.
RESUMEN
The ability to perform nanoscale electric field imaging of elementary charges at ambient temperatures will have diverse interdisciplinary applications. While the nitrogen-vacancy (NV) center in diamond is capable of high-sensitivity electrometry, demonstrations have so far been limited to macroscopic field features or detection of single charges internal to the diamond itself. In this work, we greatly extend these capabilities by using a shallow NV center to image the electric field of a charged atomic force microscope tip with nanoscale resolution. This is achieved by measuring Stark shifts in the NV spin-resonance due to AC electric fields. We demonstrate a near single-charge sensitivity of ηe = 5.3 charges/âHz and subelementary charge detection (0.68e). This proof-of-concept experiment provides the motivation for further sensing and imaging of electric fields using NV centers in diamond.
RESUMEN
Nanomechanical sensors and quantum nanosensors are two rapidly developing technologies that have diverse interdisciplinary applications in biological and chemical analysis and microscopy. For example, nanomechanical sensors based upon nanoelectromechanical systems (NEMS) have demonstrated chip-scale mass spectrometry capable of detecting single macromolecules, such as proteins. Quantum nanosensors based upon electron spins of negatively charged nitrogen-vacancy (NV) centers in diamond have demonstrated diverse modes of nanometrology, including single molecule magnetic resonance spectroscopy. Here, we report the first step toward combining these two complementary technologies in the form of diamond nanomechanical structures containing NV centers. We establish the principles for nanomechanical sensing using such nanospin-mechanical sensors (NSMS) and assess their potential for mass spectrometry and force microscopy. We predict that NSMS are able to provide unprecedented AC force images of cellular biomechanics and to not only detect the mass of a single macromolecule but also image its distribution. When combined with the other nanometrology modes of the NV center, NSMS potentially offer unparalleled analytical power at the nanoscale.
RESUMEN
The negatively charged nitrogen-vacancy (NV(-)) center in diamond is at the frontier of quantum nanometrology and biosensing. Recent attention has focused on the application of high-sensitivity thermometry using the spin resonances of NV(-) centers in nanodiamond to subcellular biological and biomedical research. Here, we report a comprehensive investigation of the thermal properties of the center's spin resonances and demonstrate an alternate all-optical NV(-) thermometry technique that exploits the temperature dependence of the center's optical Debye-Waller factor.
RESUMEN
Single charge nanoscale detection in ambient conditions is a current frontier in metrology that has diverse interdisciplinary applications. Here, such single charge detection is demonstrated using two nitrogen-vacancy (NV) centers in diamond. One NV center is employed as a sensitive electrometer to detect the change in electric field created by the displacement of a single electron resulting from the optical switching of the other NV center between its neutral (NV(0)) and negative (NV(-)) charge states. As a consequence, our measurements also provide direct insight into the charge dynamics inside the material.
RESUMEN
The negatively charged nitrogen-vacancy (NV-) center in diamond has realized new frontiers in quantum technology. Here, the optical and spin resonances of the NV- center are observed under hydrostatic pressures up to 60 GPa. Our results motivate powerful new techniques to measure pressure and image high-pressure magnetic and electric phenomena. Additionally, molecular orbital analysis and semiclassical calculations provide insight into the effects of compression on the electronic orbitals of the NV- center.
RESUMEN
We measure electron- and nuclear-spin transition frequencies in the ground state of nitrogen-vacancy (N-V) centers in diamond for two nitrogen isotopes (14N-V and 15N-V) over temperatures ranging from 77 to 400 K. Measurements are performed using Ramsey interferometry and direct optical readout of the nuclear and electron spins. We extract coupling parameters Q (for 14N-V), D, Aâ, Aâ¥, and γe/γn, and their temperature dependences for both isotopes. The temperature dependences of the nuclear-spin transitions within the ms=0 spin manifold near room temperature are found to be 0.52(1) ppm/K for 14N-V(|mI = -1⟩ â |mI = +1⟩) and -1.1(1) ppm/K for 15N-V(|mI = -1/2⟩ â |mI = +1/2⟩). An isotopic shift in the zero-field splitting parameter D between 14N-V and 15N-V is measured to be ~ 120 kHz. Residual transverse magnetic fields are observed to shift the nuclear-spin transition frequencies, especially for 15N-V. We have precisely determined the set of parameters relevant for the development of nuclear-spin-based diamond quantum sensors with greatly reduced sensitivity to environmental factors.
RESUMEN
Quantum emitters in hexagonal boron nitride were recently reported to hold unusual narrow homogeneous linewidths of tens of megahertz within the Fourier transform limit at room temperature. This unique observation was traced back to decoupling from in-plane phonon modes. Here, we investigate the origins for the mechanical decoupling. New sample preparation improved spectral diffusion, which allowed us to reveal a gap in the electron-phonon spectral density for low phonon frequencies. This sign for mechanical decoupling persists up to room temperature and explains the observed narrow lines at 300 kelvin. We investigate the dipole emission directionality and reveal preferred photon emission through channels between the layers supporting the claim for out-of-plane distorted defect centers. Our work provides insights into the underlying physics for the persistence of Fourier transform limit lines up to room temperature and gives a guide to the community on how to identify the exotic emitters.
RESUMEN
Significance: Wide-field measurement of cellular membrane dynamics with high spatiotemporal resolution can facilitate analysis of the computing properties of neuronal circuits. Quantum microscopy using a nitrogen-vacancy (NV) center is a promising technique to achieve this goal. Aim: We propose a proof-of-principle approach to NV-based neuron functional imaging. Approach: This goal is achieved by engineering NV quantum sensors in diamond nanopillar arrays and switching their sensing mode to detect the changes in the electric fields instead of the magnetic fields, which has the potential to greatly improve signal detection. Apart from containing the NV quantum sensors, nanopillars also function as waveguides, delivering the excitation/emission light to improve sensitivity. The nanopillars also improve the amplitude of the neuron electric field sensed by the NV by removing screening charges. When the nanopillar array is used as a cell niche, it acts as a cell scaffolds which makes the pillars function as biomechanical cues that facilitate the growth and formation of neuronal circuits. Based on these growth patterns, numerical modeling of the nanoelectromagnetics between the nanopillar and the neuron was also performed. Results: The growth study showed that nanopillars with a 2 - µ m pitch and a 200-nm diameter show ideal growth patterns for nanopillar sensing. The modeling showed an electric field amplitude as high as ≈ 1.02 × 10 10 mV / m at an NV 100 nm from the membrane, a value almost 10 times the minimum field that the NV can detect. Conclusion: This proof-of-concept study demonstrated unprecedented NV sensing potential for the functional imaging of mammalian neuron signals.
RESUMEN
The recent discovery of single-photon emitting defects hosted by the two-dimensional wide band gap semiconductor hexagonal boron nitride (hBN) has inspired a great number of experiments. Key characteristics of these quantum emitters are their capability to operate at room temperature with a high luminosity. In spite of large theoretical and experimental research efforts, the exact nature of the emission remains unresolved. In this work we utilize layer-by-layer etching of multilayer hBN to localize the quantum emitters with atomic precision. Our results suggest the position of the emitters correlates with the fabrication method: emitters formed under plasma treatment are always in close proximity to the crystal surface, while emitters created under electron irradiation are distributed randomly throughout the entire crystal. This disparity could be traced back to the lower kinetic energy of the ions in the plasma compared to the kinetic energy of the electrons in the particle accelerator. The emitter distance to the surface also correlates with the excited state lifetime: near-surface emitters have a shorter one compared to emitters deep within the crystal. Finite-difference time-domain and density functional theory simulations show that optical and electronic effects are not responsible for this difference, indicating effects such as coupling to surface defects or phonons might cause the reduced lifetime. Our results pave a way toward identification of the defect, as well as engineering the emitter properties.
RESUMEN
Optically addressable spins associated with defects in wide-bandgap semiconductors are versatile platforms for quantum information processing and nanoscale sensing, where spin-dependent inter-system crossing transitions facilitate optical spin initialization and readout. Recently, the van der Waals material hexagonal boron nitride (h-BN) has emerged as a robust host for quantum emitters, promising efficient photon extraction and atom-scale engineering, but observations of spin-related effects have remained thus far elusive. Here, we report room-temperature observations of strongly anisotropic photoluminescence patterns as a function of applied magnetic field for select quantum emitters in h-BN. Field-dependent variations in the steady-state photoluminescence and photon emission statistics are consistent with an electronic model featuring a spin-dependent inter-system crossing between triplet and singlet manifolds, indicating that optically-addressable spin defects are present in h-BN.
RESUMEN
Characteristic for devices based on two-dimensional materials are their low size, weight and power requirements. This makes them advantageous for use in space instrumentation, including photovoltaics, batteries, electronics, sensors and light sources for long-distance quantum communication. Here we present a comprehensive study on combined radiation effects in Earth's atmosphere on various devices based on these nanomaterials. Using theoretical modeling packages, we estimate relevant radiation levels and then expose field-effect transistors, single-photon sources and monolayers as building blocks for future electronics to γ-rays, protons and electrons. The devices show negligible change in performance after the irradiation, suggesting robust suitability for space use. Under excessive γ-radiation, however, monolayer WS2 shows decreased defect densities, identified by an increase in photoluminescence, carrier lifetime and a change in doping ratio proportional to the photon flux. The underlying mechanism is traced back to radiation-induced defect healing, wherein dissociated oxygen passivates sulfur vacancies.
RESUMEN
Stimulated emission is the process fundamental to laser operation, thereby producing coherent photon output. Despite negatively charged nitrogen-vacancy (NV-) centres being discussed as a potential laser medium since the 1980s, there have been no definitive observations of stimulated emission from ensembles of NV- to date. Here we show both theoretical and experimental evidence for stimulated emission from NV- using light in the phonon sidebands around 700 nm. Furthermore, we show the transition from stimulated emission to photoionization as the stimulating laser wavelength is reduced from 700 to 620 nm. While lasing at the zero-phonon line is suppressed by ionization, our results open the possibility of diamond lasers based on NV- centres, tuneable over the phonon sideband. This broadens the applications of NV- magnetometers from single centre nanoscale sensors to a new generation of ultra-precise ensemble laser sensors, which exploit the contrast and signal amplification of a lasing system.
RESUMEN
The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce via a model of the interplay between photo-excited carriers and atomic defects. Further, by using the NV as a probe, we map the relative fraction of positively charged nitrogen on localized optical excitation. These observations may prove important to transporting quantum information between NVs or to developing three-dimensional, charge-based memories.
RESUMEN
Electron and nuclear spins associated with point defects in insulators are promising systems for solid-state quantum technology. The electron spin is usually used for readout and addressing, and nuclear spins are used as exquisite quantum bits and memory systems. With these systems, single-shot readout of single nuclear spins as well as entanglement, aided by the electron spin, have been shown. Although the electron spin in this example is essential for readout, it usually limits the nuclear spin coherence, leading to a quest for defects with spin-free ground states. Here, we isolate a hitherto unidentified defect in diamond and use it at room temperature to demonstrate optical spin polarization and readout with exceptionally high contrast (up to 45%), coherent manipulation of an individual excited triplet state spin, and coherent nuclear spin manipulation using the triplet electron spin as a metastable ancilla. We demonstrate nuclear magnetic resonance and Rabi oscillations of the uncoupled nuclear spin in the spin-free electronic ground state. Our study demonstrates that nuclei coupled to single metastable electron spins are useful quantum systems with long memory times, in spite of electronic relaxation processes.
RESUMEN
Despite tremendous activity in employing the N- V- center in a host of quantum technology applications, the electronic and optical properties of the system are still not theoretically well understood. We have conducted density functional theory calculations of the N- V- system which show convergence at the 3 x 3 x 3 supercell level and for the first time produce a quantitatively accurate picture of the optical transition energy, excited-state lifetime, and optical polarization anisotropy taking into account all possible transitions within all contributing energy bands. These calculations were augmented by a group theoretical analysis, in sum providing a new ab initio understanding of this important solid-state quantum system.