Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067890

RESUMEN

Spatial navigation patterns in indoor space usage can reveal important cues about the cognitive health of participants. In this work, we present a low-cost, scalable, open-source edge computing system using Bluetooth low energy (BLE) beacons for tracking indoor movements in a large, 1700 m2 facility used to carry out therapeutic activities for participants with mild cognitive impairment (MCI). The facility is instrumented with 39 edge computing systems, along with an on-premise fog server. The participants carry a BLE beacon, in which BLE signals are received and analyzed by the edge computing systems. Edge computing systems are sparsely distributed in the wide, complex indoor space, challenging the standard trilateration technique for localizing subjects, which assumes a dense installation of BLE beacons. We propose a graph trilateration approach that considers the temporal density of hits from the BLE beacon to surrounding edge devices to handle the inconsistent coverage of edge devices. This proposed method helps us tackle the varying signal strength, which leads to intermittent detection of beacons. The proposed method can pinpoint the positions of multiple participants with an average error of 4.4 m and over 85% accuracy in region-level localization across the entire study area. Our experimental results, evaluated in a clinical environment, suggest that an ordinary medical facility can be transformed into a smart space that enables automatic assessment of individuals' movements, which may reflect health status or response to treatment.


Asunto(s)
Nube Computacional , Navegación Espacial , Humanos , Tecnología Inalámbrica , Estado de Salud , Movimiento , Navegación Espacial/fisiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38406564

RESUMEN

Social interaction behaviors change as a result of both physical and psychiatric problems, and it is important to identify subtle changes in group activity engagements for monitoring the mental health of patients in clinics. This work proposes a system to identify when and where group formations occur in an approximately 1700 m2 therapeutic built environment using a distributed edge-computing camera network. The proposed method can localize group formations when provided with noisy positions and orientations of individuals, estimated from sparsely distributed multiview cameras, which run a lightweight multiperson 2-D pose detection model. Our group identification method demonstrated an F1 score of up to 90% with a mean absolute error of 1.25 m for group localization on our benchmark dataset. The dataset consisted of seven subjects walking, sitting, and conversing for 35 min in groups of various sizes ranging from 2 to 7 subjects. The proposed system is low-cost and scalable to any ordinary building to transform the indoor space into a smart environment using edge computing systems. We expect the proposed system to enhance existing therapeutic units for passively monitoring the social behaviors of patients when implementing real-time interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA