Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Physiol ; 65(6): 1029-1046, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38252418

RESUMEN

Sphingolipids (SLs) are ubiquitous components of eukaryotic cell membranes and are found in some prokaryotic organisms and viruses. They are composed of a sphingoid backbone that may be acylated and glycosylated. Assembly of various sphingoid base, fatty acyl and glycosyl moieties results in highly diverse structures. The functional significance of variations in SL chemical diversity and abundance is still in the early stages of investigation. Among SL modifications, Δ8-desaturation of the sphingoid base occurs only in plants and fungi. In plants, SL Δ8-unsaturation is involved in cold hardiness. Our knowledge of the structure and functions of SLs in microalgae lags far behind that of animals, plants and fungi. Original SL structures have been reported from microalgae. However, functional studies are still missing. Ostreococcus tauri is a minimal microalga at the base of the green lineage and is therefore a key organism for understanding lipid evolution. In the present work, we achieved the detailed characterization of O. tauri SLs and unveiled unique glycosylceramides as sole complex SLs. The head groups are reminiscent of bacterial SLs, as they contain hexuronic acid residues and can be polyglycosylated. Ceramide backbones show a limited variety, and SL modification is restricted to Δ8-unsaturation. The Δ8-SL desaturase from O. tauri only produced E isomers. Expression of both Δ8-SL desaturase and Δ8-unsaturation of sphingolipids varied with temperature, with lower levels at 24°C than at 14°C. Overexpression of the Δ8-SL desaturase dramatically increases the level of Δ8 unsaturation at 24°C and is paralleled by a failure to increase cell size. Our work provides the first characterization of O. tauri SLs and functional evidence for the involvement of SL Δ8-unsaturation for temperature acclimation in microalgae, suggesting that this function is an ancestral feature in the green lineage.


Asunto(s)
Chlorophyta , Esfingolípidos , Temperatura , Esfingolípidos/metabolismo , Chlorophyta/metabolismo , Chlorophyta/genética , Microalgas/metabolismo
2.
Planta ; 259(4): 89, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467941

RESUMEN

MAIN CONCLUSION: Taiwan oil millet has two types of epicuticular wax: platelet wax composed primarily of octacosanol and filament wax constituted essentially by the singular compound of octacosanoic acid. Taiwan oil millet (TOM-Eccoilopus formosanus) is an orphan crop cultivated by the Taiwan indigenous people. It has conspicuous white powder covering its leaf sheath indicating abundant epicuticular waxes, that may contribute to its resilience. Here, we characterized the epicuticular wax secretion in TOM leaf blade and leaf sheath using various microscopy techniques, as well as gas chromatography to determine its composition. Two kinds of waxes, platelet and filaments, were secreted in both the leaf blades and sheaths. The platelet wax is secreted ubiquitously by epidermal cells, whereas the filament wax is secreted by a specific cell called epidermal cork cells. The newly developed filament waxes were markedly re-synthesized by the epidermal cork cells through papillae protrusions on the external periclinal cell wall. Ultrastructural images of cork cell revealed the presence of cortical endoplasmic reticulum (ER) tubules along the periphery of plasma membrane (PM) and ER-PM contact sites (EPCS). The predominant wax component was a C28 primary alcohol in leaf blade, and a C28 free fatty acid in the leaf sheath, pseudopetiole and midrib. The wax morphology present in distinct plant organs corresponds to the specific chemical composition: platelet wax composed of alcohols exists mainly in the leaf blade, whereas filament wax constituted mainly by the singular compound C28 free fatty acids is present abundantly in leaf sheath. Our study clarifies the filament wax composition in relation to a previous study in sorghum. Both platelet and filament waxes comprise a protection barrier for TOM.


Asunto(s)
Mijos , Sorghum , Humanos , Taiwán , Microscopía Electrónica de Rastreo , Sorghum/metabolismo , Ceras/metabolismo , Hojas de la Planta/metabolismo , Epidermis de la Planta/metabolismo
3.
Plant Cell ; 32(11): 3613-3637, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32958563

RESUMEN

The spatiotemporal pattern of deposition, final amount, and relative abundance of oleic acid (cis-ω-9 C18:1) and its derivatives in the different lipid fractions of the seed of Arabidopsis (Arabidopsis thaliana) indicates that omega-9 monoenes are synthesized at high rates in this organ. Accordingly, we observed that four Δ9 stearoyl-ACP desaturase (SAD)-coding genes (FATTY ACID BIOSYNTHESIS2 [FAB2], ACYL-ACYL CARRIER PROTEIN5 [AAD5], AAD1, and AAD6) are transcriptionally induced in seeds. We established that the three most highly expressed ones are directly activated by the WRINKLED1 transcription factor. We characterized a collection of 30 simple, double, triple, and quadruple mutants affected in SAD-coding genes and thereby revealed the functions of these desaturases throughout seed development. Production of oleic acid by FAB2 and AAD5 appears to be critical at the onset of embryo morphogenesis. Double homozygous plants from crossing fab2 and aad5 could never be obtained, and further investigations revealed that the double mutation results in the arrest of embryo development before the globular stage. During later stages of seed development, these two SADs, together with AAD1, participate in the elaboration of the embryonic cuticle, a barrier essential for embryo-endosperm separation during the phase of invasive embryo growth through the endosperm. This study also demonstrates that the four desaturases redundantly contribute to storage lipid production during the maturation phase.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Oxigenasas de Función Mixta/genética , Semillas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta/metabolismo , Mutación , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
J Exp Bot ; 73(9): 2817-2834, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35560197

RESUMEN

Wax esters are high-value compounds used as feedstocks for the production of lubricants, pharmaceuticals, and cosmetics. Currently, they are produced mostly from fossil reserves using chemical synthesis, but this cannot meet increasing demand and has a negative environmental impact. Natural wax esters are also obtained from Simmondsia chinensis (jojoba) but comparably in very low amounts and expensively. Therefore, metabolic engineering of plants, especially of the seed storage lipid metabolism of oil crops, represents an attractive strategy for renewable, sustainable, and environmentally friendly production of wax esters tailored to industrial applications. Utilization of wax ester-synthesizing enzymes with defined specificities and modulation of the acyl-CoA pools by various genetic engineering approaches can lead to obtaining wax esters with desired compositions and properties. However, obtaining high amounts of wax esters is still challenging due to their negative impact on seed germination and yield. In this review, we describe recent progress in establishing non-food-plant platforms for wax ester production and discuss their advantages and limitations as well as future prospects.


Asunto(s)
Ésteres , Ceras , Ésteres/metabolismo , Lubricantes/metabolismo , Ingeniería Metabólica , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Ceras/metabolismo
5.
PLoS Genet ; 15(4): e1007847, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30998684

RESUMEN

The embryonic cuticle is necessary for normal seed development and seedling establishment in Arabidopsis. Although mutants with defective embryonic cuticles have been identified, neither the deposition of cuticle material, nor its regulation, has been described during embryogenesis. Here we use electron microscopy, cuticle staining and permeability assays to show that cuticle deposition initiates de novo in patches on globular embryos. By combining these techniques with genetics and gene expression analysis, we show that successful patch coalescence to form a continuous cuticle requires a signalling involving the endosperm-specific subtilisin protease ALE1 and the receptor kinases GSO1 and GSO2, which are expressed in the developing embryonic epidermis. Transcriptome analysis shows that this pathway regulates stress-related gene expression in seeds. Consistent with these findings we show genetically, and through activity analysis, that the stress-associated MPK6 protein acts downstream of GSO1 and GSO2 in the developing embryo. We propose that a stress-related signalling pathway has been hijacked in some angiosperm seeds through the recruitment of endosperm-specific components. Our work reveals the presence of an inter-compartmental dialogue between the endosperm and embryo that ensures the formation of an intact and functional cuticle around the developing embryo through an "auto-immune" type interaction.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/fisiología , Desarrollo Embrionario , Desarrollo de la Planta , Transducción de Señal , Estrés Fisiológico , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desarrollo Embrionario/genética , Endospermo/embriología , Endospermo/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fenotipo , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente , Semillas/genética , Estrés Fisiológico/genética , Transgenes
6.
Plant Cell Physiol ; 62(2): 280-292, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33377945

RESUMEN

Detecting processes of local adaptation in forest trees and identifying environmental selective drivers are of primary importance for forest management and conservation. Transplant experiments, functional genomics and population genomics are complementary tools to efficiently characterize heritable phenotypic traits and to decipher the genetic bases of adaptive traits. Using an integrative approach combining phenotypic assessment in common garden, transcriptomics and landscape genomics, we investigated leaf adaptive traits in Coffea mauritiana, a forest tree endemic to Reunion Island. Eight populations of C. mauritiana originating from sites with contrasted environmental conditions were sampled in common garden to assess several leaf morphological traits, to analyze the leaf transcriptome and leaf cuticular wax composition. The relative alkane content of cuticular waxes was significantly correlated with major climatic gradients, paving the way for further transcriptome-based analyses. The expression pattern of cuticle biosynthetic genes was consistent with a modulation of alkane accumulation across the population studied, supporting the hypothesis that the composition of cuticular wax is involved in the local adaptation of C. mauritiana. Association tests in landscape genomics performed using RNA-seq-derived single-nucleotide polymorphisms revealed that genes associated with cell wall remodeling also likely play an adaptive role. By combining these different approaches, this study efficiently identified local adaptation processes in a non-model species. Our results provide the first evidence for local adaptation in trees endemic to Reunion Island and highlight the importance of cuticle composition for the adaptation of trees to the high evaporative demand in warm climates.


Asunto(s)
Coffea/fisiología , Árboles/fisiología , Adaptación Fisiológica/fisiología , Cambio Climático , Coffea/genética , Bosques , Estudio de Asociación del Genoma Completo , Genómica , Hojas de la Planta/fisiología , Polimorfismo de Nucleótido Simple/genética , Carácter Cuantitativo Heredable , Reunión , Árboles/genética
7.
Plant Physiol ; 184(1): 266-282, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32665334

RESUMEN

In all land plants, the outer surface of aerial parts is covered by the cuticle, a complex lipid layer that constitutes a barrier against damage caused by environmental factors and provides protection against nonstomatal water loss. We show in this study that both cuticle deposition and cuticle-dependent leaf permeability during the juvenile phase of plant development are controlled by the maize (Zea mays) transcription factor ZmFUSED LEAVES 1 (FDL1)/MYB94. Biochemical analysis showed altered cutin and wax biosynthesis and deposition in fdl1-1 mutant seedlings at the coleoptile stage. Among cutin compounds, ω-hydroxy fatty acids and polyhydroxy-fatty acids were specifically affected, while the reduction of epicuticular waxes was mainly observed in primary long chain alcohols and, to a minor extent, in long-chain wax esters. Transcriptome analysis allowed the identification of candidate genes involved in lipid metabolism and the assembly of a proposed pathway for cuticle biosynthesis in maize. Lack of ZmFDL1/MYB94 affects the expression of genes located in different modules of the pathway, and we highlighted the correspondence between gene transcriptional variations and biochemical defects. We observed a decrease in cuticle-dependent leaf permeability in maize seedlings exposed to drought as well as abscisic acid treatment, which implies coordinated changes in the transcript levels of ZmFDL1/MYB94 and associated genes. Overall, our results suggest that the response to water stress implies the activation of wax biosynthesis and the involvement of both ZmFDL1/MYB94 and abscisic acid regulatory pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sequías , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética
8.
Plant Physiol ; 184(1): 82-96, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32669420

RESUMEN

Eukaryotic Δ6-desaturases are microsomal enzymes that balance the synthesis of ω-3 and ω-6 C18-polyunsaturated fatty acids (C18-PUFAs) according to their specificity. In several microalgae, including Ostreococcus tauri, plastidic C18-PUFAs are strictly regulated by environmental cues suggesting an autonomous control of Δ6-desaturation of plastidic PUFAs. Here, we identified two putative front-end Δ6/Δ8-desaturases from O tauri that, together with putative homologs, cluster apart from other characterized Δ6-desaturases. Both were plastid-located and unambiguously displayed a Δ6-desaturation activity when overexpressed in the heterologous hosts Nicotiana benthamiana and Synechocystis sp. PCC6803, as in the native host. Detailed lipid analyses of overexpressing lines unveiled distinctive ω-class specificities, and most interestingly pointed to the importance of the lipid head-group and the nonsubstrate acyl-chain for the desaturase efficiency. One desaturase displayed a broad specificity for plastidic lipids and a preference for ω-3 substrates, while the other was more selective for ω-6 substrates and for lipid classes including phosphatidylglycerol as well as the peculiar 16:4-galactolipid species occurring in the native host. Overexpression of both Δ6-desaturases in O tauri prevented the regulation of C18-PUFA under phosphate deprivation and triggered glycerolipid fatty-acid remodeling, without causing any obvious alteration in growth or photosynthesis. Tracking fatty-acid modifications in eukaryotic hosts further suggested the export of plastidic lipids to extraplastidic compartments.


Asunto(s)
Ácido Graso Desaturasas/metabolismo , Ácido Graso Desaturasas/genética , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados/metabolismo , Plastidios/genética , Plastidios/metabolismo , Especificidad por Sustrato , Nicotiana/genética , Nicotiana/metabolismo
9.
Plant Physiol ; 179(2): 415-432, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30514726

RESUMEN

Plant aerial organs are coated with cuticular waxes, a hydrophobic layer that primarily serves as a waterproofing barrier. Cuticular wax is a mixture of aliphatic very-long-chain molecules, ranging from 22 to 48 carbons, produced in the endoplasmic reticulum of epidermal cells. Among all wax components, alkanes represent up to 80% of total wax in Arabidopsis (Arabidopsis thaliana) leaves. Odd-numbered alkanes and their derivatives are produced through the alkane-forming pathway. Although the chemical reactions of this pathway have been well described, the enzymatic mechanisms catalyzing these reactions remain unclear. We previously showed that a complex made of Arabidopsis ECERIFERUM1 (CER1) and CER3 catalyzes the conversion of acyl-Coenzyme A's to alkanes with strict substrate specificity for compounds containing more than 29 carbons. To learn more about alkane biosynthesis in Arabidopsis, we characterized the biochemical specificity and physiological functions of a CER1 homolog, CER1-LIKE1. In a yeast strain engineered to produce very-long-chain fatty acids, CER1-LIKE1 interacted with CER3 and cytochrome B5 to form a functional complex leading to the production of alkanes that are of different chain lengths compared to that produced by CER1-containing complexes. Gene expression analysis showed that both CER1 and CER1-LIKE1 are differentially expressed in an organ- and tissue-specific manner. Moreover, the inactivation or overexpression of CER1-LIKE1 in Arabidopsis transgenic lines specifically impacted alkane biosynthesis and wax crystallization. Collectively, our study reports on the identification of a further plant alkane synthesis enzymatic component and supports a model in which several alkane-forming complexes with distinct chain-length specificities coexist in plants.


Asunto(s)
Alcanos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Liasas de Carbono-Carbono , Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Saccharomyces cerevisiae/genética , Nicotiana/genética , Ceras/química , Ceras/metabolismo
10.
Plant Cell ; 29(12): 3068-3084, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29180598

RESUMEN

Plants require trace levels of manganese (Mn) for survival, as it is an essential cofactor in oxygen metabolism, especially O2 production via photosynthesis and the disposal of superoxide radicals. These processes occur in specialized organelles, requiring membrane-bound intracellular transporters to partition Mn between cell compartments. We identified an Arabidopsis thaliana member of the NRAMP family of divalent metal transporters, NRAMP2, which functions in the intracellular distribution of Mn. Two knockdown alleles of NRAMP2 showed decreased activity of photosystem II and increased oxidative stress under Mn-deficient conditions, yet total Mn content remained unchanged. At the subcellular level, these phenotypes were associated with a loss of Mn content in vacuoles and chloroplasts. NRAMP2 was able to rescue the mitochondrial yeast mutant mtm1∆ In plants, NRAMP2 is a resident protein of the trans-Golgi network. NRAMP2 may act indirectly on downstream organelles by building up a cytosolic pool that is used to feed target compartments. Moreover, not only does the nramp2 mutant accumulate superoxide ions, but NRAMP2 can functionally replace cytosolic superoxide dismutase in yeast, indicating that the pool of Mn displaced by NRAMP2 is required for the detoxification of reactive oxygen species.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Homeostasis , Espacio Intracelular/metabolismo , Manganeso/metabolismo , Fotosíntesis , Red trans-Golgi/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Transporte Biológico , Pared Celular/metabolismo , Cloroplastos/metabolismo , Epistasis Genética , Manganeso/deficiencia , Modelos Biológicos , Mutación/genética , Oxidación-Reducción , Estrés Oxidativo , Permeabilidad , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Saccharomyces cerevisiae/metabolismo , Nicotiana , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA