Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Plant Dis ; 107(8): 2325-2334, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37596715

RESUMEN

Banana (Musa spp.) is an important fruit and food crop worldwide. In recent years, banana sheath rot has become a major problem in banana cultivation, causing plant death and substantial economic losses. Nevertheless, the pathogen profile of this disease has not been fully characterized. Klebsiella variicola is a versatile bacterium capable of colonizing different hosts, such as plants, humans, insects, and animals, and is recognized as an emerging pathogen in various hosts. In this study, we obtained 12 bacterial isolates from 12 different banana samples showing banana sheath rot in Guangdong and Guangxi Provinces, China. Phylogenetic analysis based on 16S rRNA sequences confirmed that all 12 isolates were K. variicola strains. We sequenced the genomes of these strains, performed comparative genomic analysis with other sequenced K. variicola strains, and found a lack of consistency in accessory gene content among these K. variicola strains. However, prediction based on the pan-genome of K. variicola revealed 22 unique virulence factors carried by the 12 pathogenic K. variicola isolates. Microbiome and microbial interaction network analysis of endophytes between the healthy tissues of diseased plants and healthy plants of two cultivars showed that Methanobacterium negatively interacts with Klebsiella in banana plants and that Herbaspirillum might indirectly inhibit Methanobacterium to promote Klebsiella growth. These results suggest that banana sheath rot is caused by the imbalance of plant endophytes and opportunistic pathogenic bacteria, providing an important basis for research and control of this disease.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Musa , Animales , Humanos , Filogenia , ARN Ribosómico 16S/genética , China , Klebsiella/genética , Endófitos
2.
Phytopathology ; 112(2): 219-231, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34231376

RESUMEN

The banana (Musa spp.) industry experiences dramatic annual losses from Fusarium wilt of banana disease, which is caused by the fungus Fusarium oxysporum f. sp. cubense (FOC). Pisang Awak banana 'Fenza No. 1' (Musa spp. cultivar Fenza No. 1), a major banana cultivar with high resistance to F. oxysporum f. sp. cubense race 4, is considered to be ideal for growth in problematic areas. However, 'Fenza No. 1' is still affected by F. oxysporum f. sp. cubense race 1 in the field. TR21 is an endophytic Bacillus subtilis strain isolated from orchids (Dendrobium sp.). Axillary spraying of banana plants with TR21 controls Fusarium wilt of banana, decreasing the growth period and increasing yields in the field. In this study, we established that TR21 increases root growth in different monocotyledonous plant species. By axillary inoculation, TR21 induced a similar transcriptomic change as that induced by F. oxysporum f. sp. cubense race 1 but also upregulated the biosynthetic pathways for the phytohormones brassinosteroid and jasmonic acid in 'Fenza No. 1' root tissues, indicating that TR21 increases Fusarium wilt of banana resistance, shortens growth period, and increases yield of banana by inducing specific transcriptional reprogramming and modulating phytohormone levels. These findings will contribute to the identification of candidate genes related to plant resistance against fungi in a nonmodel system and facilitate further study and exploitation of endophytic biocontrol agents.


Asunto(s)
Fusarium , Musa , Bacillus subtilis/genética , Brasinoesteroides/metabolismo , Ciclopentanos , Fusarium/fisiología , Musa/microbiología , Oxilipinas , Enfermedades de las Plantas/microbiología
3.
Biotechnol Lett ; 44(5-6): 777-786, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35416565

RESUMEN

Legionella pneumophila is the major causative agent of Legionnaires' disease and Pontiac fever, which pose major public health problems. Rapid detection of L. pneumophila is important for global control of these diseases. Aptamers, short oligonucleotides that bind to targets with high affinity and specificity, have great potential for use in pathogenic bacterium detection, diagnostics, and therapy. Here, we used a whole-cell SELEX (systematic evolution of ligands by exponential enrichment) method to isolate and characterize single-stranded DNA (ssDNA) aptamers against L. pneumophila. A total of 60 ssDNA sequences were identified after 17 rounds of selection. Other bacterial species (Escherichia coli, Bacillus subtilis, Pseudomonas syringae, Staphylococcus aureus, Legionella quateirensis, and Legionella adelaidensis) were used for counterselection to enhance the specificity of ssDNA aptamers against L. pneumophila. Four ssDNA aptamers showed strong affinity and high selectivity for L. pneumophila, with Kd values in the nanomolar range. Bioinformatic analysis of the most specific aptamers revealed predicted conserved secondary structures that might bind to L. pneumophila cell walls. In addition, the binding of these four fluorescently labeled aptamers to the surface of L. pneumophila was observed directly by fluorescence microscopy. These aptamers identified in this study could be used in the future to develop medical diagnostic tools and public environmental detection assays for L. pneumophila.


Asunto(s)
Aptámeros de Nucleótidos , Legionella pneumophila , Aptámeros de Nucleótidos/química , ADN de Cadena Simple/genética , Escherichia coli/genética , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Técnica SELEX de Producción de Aptámeros
4.
Plant Dis ; 105(4): 1183-1186, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33245260

RESUMEN

Pepper wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. capsici, is one of the main diseases on pepper. In this study, we obtained the whole genome sequence of the highly virulent F. oxysporum f. sp. capsici strain 14003 sequenced using the Illumina HiSeq 2000 platform. In total, 3.87 million paired-end reads were obtained and assembled into 796 scaffolds with a genome-wide length of 47.6 Mb. In addition, we filtered genes that may be related to specific virulence factors and performed a comparative analysis between the genome of strain 14003 and the sequenced genomes of 36 isolates. The genome-sequencing results for strain 14003 will enhance the theoretical basis for pepper wilt prevention and control.


Asunto(s)
Fusarium , Fusarium/genética , Genoma Fúngico , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas
5.
Int J Mol Sci ; 21(16)2020 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-32824317

RESUMEN

Fusarium oxysporum f. sp. cubense race 4 (Foc4) causes Fusarium wilt that affects banana plants, and hence, the molecular mechanisms of its virulence need to be investigated. We purified an exo-polygalacturonase (exo-PG), Pgc4, from Foc4. Pgc4 has an apparent molecular weight of 50.87 kDa based on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. We further performed its sequence analysis and biochemical characterization. The two pgc4 genes encoding Pgc4 from Foc4 and Foc1 were 1434 bp in length and encoded 477 amino acids with differences, due to some nucleotide differences between the two. The Km and Vmax values of Pgc4 purified from Foc4 were determined to be 0.45 mg/mL and 105.26 Units·mg·protein-1 ·min-1, respectively. The recombinant proteins, r-Foc1-Pgc4 and r-Foc4-Pgc4, were expressed and purified from Pichia pastoris and showed optimal Pgc4 activity at 55 °C and pH 4.0; both could induce tissue maceration and necrosis in the "Guangfen-1" and "Baxi" varieties of banana but to a different extent. Phenotypic assays and complementation analyses revealed that, compared to the wild-type, the generated Foc4Δpgc4 mutant strain showed a lower aerial hyphal growth, grew slower, and had a reduced virulence. Therefore, our results demonstrate the function of Pgc4 as a pathogenicity factor of Foc4.


Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/enzimología , Glicósido Hidrolasas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidad , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Hifa/genética , Hifa/crecimiento & desarrollo , Musa/microbiología , Virulencia/genética
7.
Int J Mol Sci ; 16(4): 7595-607, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25854430

RESUMEN

Fusarium wilt (Panama disease) caused by Fusarium oxysporum f. sp. cubense (FOC) represents a significant threat to banana (Musa spp.) production. Musa AAB is susceptible to Race 1 (FOC1) and Race 4 (FOC4), while Cavendish Musa AAA is found to be resistant to FOC1 but still susceptible to Race 4. A polygalacturonase (PGC3) was purified from the supernatant of Fusarium oxysporum f. sp. cubense race 4 (FOC4), which is the pathogen of Fusarium wilt. PGC3 had an apparent molecular weight of 45 kDa according to SDS-PAGE. The enzyme hydrolyzed polygalacturonic acid in an exo-manner, as demonstrated by analysis of degradation products. The Km and Vmax values of PGC3 from FOC4 were determined to be 0.70 mg·mL-1 and 101.01 Units·mg·protein-1·min-1, respectively. Two pgc3 genes encoding PGC3 from FOC4 and FOC1, both genes of 1368 bp in length encode 456 amino-acid residues with a predicted signal peptide sequence of 21 amino acids. There are 16 nucleotide sites difference between FOC4-pgc3 and FOC1-pgc3, only leading to four amino acid residues difference. In order to obtain adequate amounts of protein required for functional studies, two genes were cloned into the expression vector pPICZaA and then expressed in Pichia pastoris strains of SMD1168. The recombinant PGC3, r-FOC1-PGC3 and r-FOC4-PGC3, were expressed and purified as active proteins. The optimal PGC3 activity was observed at 50 °C and pH 4.5. Both recombinant PGC3 retained >40% activity at pH 3-7 and >50% activity in 10-50 °C. Both recombinant PGC3 proteins could induce a response but with different levels of tissue maceration and necrosis in banana plants. In sum, our results indicate that PGC3 is an exo-PG and can be produced with full function in P. pastoris.


Asunto(s)
Fusarium/enzimología , Poligalacturonasa/aislamiento & purificación , Poligalacturonasa/metabolismo , Clonación Molecular , Proteínas Fúngicas , Fusarium/genética , Datos de Secuencia Molecular , Pichia/genética , Pichia/metabolismo , Poligalacturonasa/genética
8.
J Fungi (Basel) ; 9(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36983533

RESUMEN

Fusarium oxysporum f. sp. cubense (Foc), which causes Fusarium wilt of bananas, is considered one of the most destructive fungal pathogens of banana crops worldwide. During infection, Foc secretes many different proteins which promote its colonization of plant tissues. Although F. oxysporum has no sexual cycle, it has been reported to secrete an α-pheromone, which acts as a growth regulator, chemoattractant, and quorum-sensing signaling molecule; and to encode a putative protein with the hallmarks of fungal α-pheromone precursors. In this study, we identified an ortholog of the α-pheromone precursor gene, Foc4-PP1, in Foc tropical race 4 (TR4), and showed that it was necessary for the growth and virulence of Foc TR4. Foc4-PP1 deletion from the Foc TR4 genome resulted in decreased fungal growth, increased sensitivity to oxidative stress and cell-wall-damaging agents, and attenuation of pathogen virulence towards banana plantlets. Subcellular localization analysis revealed that Foc4-PP1 was concentrated in the nuclei and cytoplasm of Nicotiana benthamiana cells, where it could suppress BAX-induced programmed cell death. In conclusion, these findings suggest that Foc4-PP1 contributes to Foc TR4 virulence by promoting hyphal growth and abiotic stress resistance and inhibiting the immune defense responses of host plants.

9.
Front Microbiol ; 14: 1301062, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029145

RESUMEN

Fusarium oxysporum f. sp. cubense tropical race 4 (FocTR4) is a devastating phytopathogen responsible for significant losses in banana production worldwide. Trichoderma and other biocontrol agents (BCAs) have been used as suitable disease control methods for banana Fusarium wilt. In this study, the endophytic T. koningiopsis Tk905 strain was isolated from the roots of dendrobe plants and identified utilizing morphological and molecular analyses. Antifungal activity tests revealed that Tk905 effectively inhibited mycelial growth with inhibition rates ranging from 26.52 to 75.34%. Additionally, Tk905 covered the pathogen mycelia, and spores were observed on or around the pathogen hyphae. The average root and shoot fresh weights and plant height, of Tk905-inoculated plants were significantly higher than those of the untreated plants. Furthermore, Tk905 treatment significantly increased the activity of antioxidant enzymes, such as catalase (CAT), phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD), suggesting that Tk905 may enhance plant defence systems by activating their antioxidant mechanisms. Most importantly, Tk905-treated plants inoculated by three methods exhibited significantly lower disease incidence and severity than untreated plants. The protective effects of Tk905 against FocTR4 infection were not only observed in the early stages of infection but persisted throughout the experiment, suggesting that T. koningiopsis Tk905 can provide long-lasting protection against Fusarium wilt.

10.
Genes Genomics ; 45(1): 123-134, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35670995

RESUMEN

BACKGROUND: Ralstonia solanacearum causes bacterial wilt of Pogostemon cablin which is an important aromatic herb and also the main materials of COVID-19 therapeutic traditional drugs. However, we are lacking the information on the genomic sequences of R. solanacearum isolated from P. cablin. OBJECTIVE: The acquisition and analysis of this whole-genome sequence of the P. cablin bacterial wilt pathogen. METHODS: An R. solanacearum strain, named SY1, was isolated from infected P. cablin plants, and the complete genome sequence was sequenced and analyzed. RESULTS: The SY1 strain contains a 3.70-Mb chromosome and a 2.18-Mb megaplasmid, with GC contents of 67.57% and 67.41%, respectively. A total of 3308 predicted genes were located on the chromosome and 1657 genes were located in the megaplasmid. SY1 strain has 273 unique genes compared with five representative R. solanacearum strains, and these genes were enriched in the plant-pathogen interaction pathway. SY1 possessed a higher syntenic relationship with phylotype I strains, and the arsenal of type III effectors predicted in SY1 were also more closely related to those of phylotype I strains. SY1 contained 14 and 5 genomic islands in its chromosome and megaplasmid, respectively, and two prophage sequences in its chromosome. In addition, 215 and 130 genes were annotated as carbohydrate-active enzymes and antibiotic resistance genes, respectively. CONCLUSION: This is the first genome-scale assembly and annotation for R. solanacearum which isolated from infected P. cablin plants. The arsenal of virulence and antibiotic resistance may as the determinants in SY1 for infection of P. cablin plants.


Asunto(s)
COVID-19 , Pogostemon , Ralstonia solanacearum , Ralstonia solanacearum/genética , Pogostemon/genética , Pogostemon/microbiología , COVID-19/genética , Virulencia/genética , Genes Bacterianos
11.
iScience ; 26(6): 106819, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37250797

RESUMEN

Lauryl alcohol, a natural compound found in plants and other organisms, is widely used to make surfactants, food, and pharmaceuticals. GZM, a plant protection preparation with lauryl alcohol as its major component is thought to establish a physical barrier on the plant surface, but its physiological functions are unknown. Here, we show that GZM improves the performance of peanut (Arachis hypogaea) plants in both the laboratory and the field. We demonstrate that the treatment with GZM or lauryl alcohol raises the contents of several specific lysophospholipids and induces the biosynthesis of phenylpropanoids, flavonoids, and wax in various plant species. In the field, GZM improves crop immunity, yield, and quality. In addition, GZM and lauryl alcohol can inhibit the growth of some pathogenic fungi. Our findings provide insights into the physiological and biological effects of GZM treatment on plants and show that GZM and lauryl alcohol are promising preparations in agricultural production.

12.
Front Microbiol ; 14: 1281381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840725

RESUMEN

Bacterial wilt disease caused by Ralstonia solanacearum is a widespread, severe plant disease. Tomato (Solanum lycopersicum), one of the most important vegetable crops worldwide, is particularly susceptible to this disease. Biological control offers numerous advantages, making it a highly favorable approach for managing bacterial wilt. In this study, the results demonstrate that treatment with the biological control strain Bacillus subtilis R31 significantly reduced the incidence of tomato bacterial wilt. In addition, R31 directly inhibits the growth of R. solanacearum, and lipopeptides play an important role in this effect. The results also show that R31 can stably colonize the rhizosphere soil and root tissues of tomato plants for a long time, reduce the R. solanacearum population in the rhizosphere soil, and alter the microbial community that interacts with R. solanacearum. This study provides an important theoretical basis for elucidating the mechanism of B. subtilis as a biological control agent against bacterial wilt and lays the foundation for the optimization and promotion of other agents such as R31.

13.
MycoKeys ; 95: 163-188, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251991

RESUMEN

Colletotrichum species are well-known plant pathogens, saprobes, endophytes, human pathogens and entomopathogens. However, little is known about Colletotrichum as endophytes of plants and cultivars including Citrusgrandis cv. "Tomentosa". In the present study, 12 endophytic Colletotrichum isolates were obtained from this host in Huazhou, Guangdong Province (China) in 2019. Based on morphology and combined multigene phylogeny [nuclear ribosomal internal transcribed spacer (ITS), glyceraldehyde-3-phosphate dehydrogenase (gapdh), chitin synthase 1 (chs-1), histone H3 (his3) actin (act), beta-tubulin (ß-tubulin) and glutamine synthetase (gs)], six Colletotrichum species were identified, including two new species, namely Colletotrichumguangdongense and C.tomentosae. Colletotrichumasianum, C.plurivorum, C.siamense and C.tainanense are identified as being the first reports on C.grandis cv. "Tomentosa" worldwide. This study is the first comprehensive study on endophytic Colletotrichum species on C.grandis cv. "Tomentosa" in China.

14.
J Fungi (Basel) ; 8(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36012857

RESUMEN

The Cylindrocladium black rot caused by Calonectria ilicicola is a destructive disease affecting a broad range of crops. Herein, we study virulence-associated genes of C. ilicicolaCi14017 isolated from diseased peanut roots (Arachis hypogaea L.). Ci14017 was identified via phylogenetic analysis of the internal transcribed spacer region and standard Koch's postulate testing. Virulence-associated genes were based on genome analyses and comparative analysis of transcriptome and proteome profiles of sensitive and resistant peanut cultivars. Ci14017 identified as C. ilicicola has a 66 Mb chromosome with 18,366 predicted protein-coding genes. Overall, 46 virulence-associated genes with enhanced expression levels in the sensitive cultivars were identified. Sequence analysis indicated that the 46 gene products included two merops proteins, eight carbohydrate-active enzymes, seven cytochrome P450 enzymes, eight lipases, and 20 proteins with multi-conserved enzyme domains. The results indicate a complex infection mechanism employed by Ci14017 for causing Cylindrocladium black rot in peanuts.

15.
Pathogens ; 11(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36297162

RESUMEN

Pogostemon cablin (Lamiaceae) is a component of traditional medicines in Southern China. The identification of P. cablin pathogens is essential for the production and development of this industry. During 2019-2020, a leaf spot on P. cablin was observed in Zhanjiang, Guangdong Province. The pathogen of the leaf spot was isolated and identified using morphological and phylogenetic methods. Phylogenetic analysis was performed using the internal transcribed spacer (ITS) region, glyceraldehyde-3-phosphate dehydrogenase (gapdh), RNA polymerase II (rpb2), translation extension factor 1-alpha (tef1), and Alternaria major allergen 1 (Alt-a1) genes. Based on phylogenetic and morphological studies, this was confirmed to be a novel species of Alternaria pogostemonis, with description and illustrations presented. The pathogenicity test of A. pogostemon was verified by Koch's postulates as causing leaf spot disease. This is the first report of leaf spot disease in P. cablin caused by the Alternaria species. This study contributes to the knowledge of P. cablin leaf spot diseases.

16.
J Agric Food Chem ; 70(25): 7716-7726, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35708354

RESUMEN

N-Acylhomoserine lactone (AHL) and diffusible signal factor (DSF) molecules are two families of widely conserved quorum sensing (QS) signals. Quorum quenching (QQ) via enzymatic inactivation of QS signals is a promising strategy of biocontrol. In the search for biocontrol agent quenching both AHL and DSF signals, it has been recently identified that DSF-quenching biocontrol agent Pseudomonas sp. HS-18 contains at least three genes (aigA, aigB, and aigC) encoding AHL-acylases displaying strong AHL-acylase activities on various AHLs. Among them, AigA and AigC presented broad-spectrum enzyme activity against AHLs, while AigB preferred longer AHLs. Interestingly, transcriptional expression of aigC could be significantly induced by AHL signals. Heterologous expression of aigA-C in Burkholderia cenocepacia and Pseudomonas aeruginosa resulted in drastically decreased AHL accumulation, virulence factor production, biofilm formation, motility, and virulence on plants. Significantly, the two types of QQ mechanisms in HS-18 showed a strong and much desired synergistic effect for enhanced biocontrol potency against AHL- and DSF-dependent pathogens.


Asunto(s)
Acil-Butirolactonas , Percepción de Quorum , Acil-Butirolactonas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Virulencia , Factores de Virulencia/metabolismo
17.
J Fungi (Basel) ; 8(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36012794

RESUMEN

Diaporthe species are endophytes, pathogens, and saprobes with a wide host range worldwide. However, little is known about endophytic Diaporthe species associated with Morinda officinalis. In the present study, 48 endophytic Diaporthe isolates were obtained from cultivated M. officinalis in Deqing, Guangdong Province, China. The nuclear ribosomal internal transcribed spacer (ITS), partial sequences of translation elongation factor 1-α (tef1-α), partial calmodulin (cal), histone H3 (his), and Beta-tubulin (ß-tubulin) gene regions were sequenced and employed to construct phylogenetic trees. Based on morphology and combined multigene phylogeny, 12 Diaporthe species were identified, including five new species of Diaporthe longiconidialis, D. megabiguttulata, D. morindendophytica, D. morindae, and D. zhaoqingensis. This is the first report of Diaporthe chongqingensis, D. guangxiensis, D. heliconiae, D. siamensis, D. unshiuensis, and D. xishuangbanica on M. officinalis. This study provides the first intensive study of endophytic Diaporthe species on M. officinalis in China. These results will improve the current knowledge of Diaporthe species associated with this traditional medicinal plant. Furthermore, results from this study will help to understand the potential pathogens and biocontrol agents from M. officinalis and to develop a disease management platform.

18.
BMC Biochem ; 12: 51, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21920035

RESUMEN

BACKGROUND: Fusarium wilt is an economically devastating disease that affects banana production. Although Cavendish banana cultivars are resistant to Fusarium oxysporum f.sp. cubense race 1 (FOC1) and maitain banana production after Gros Michel was destructed by race 1, a new race race 4 (FOC4) was found to infect Cavendish. RESULTS: An exopolygalacturonase (PGC2) was isolated and purified from the supernatant of the plant pathogen Fusarium oxysporum f.sp. cubense race 4 (FOC4). PGC2 had an apparent Mr of 63 kDa by SDS-PAGE and 51.7 kDa by mass spectrometry. The enzyme was N-glycosylated. PGC2 hydrolyzed polygalacturonic acid in an exo-manner, as demonstrated by analysis of degradation products. To obtain adequate amounts of protein for functional studies between the PGC2 proteins of two races of the pathogen, pgc2 genes encoding PGC2 from race 4 (FOC4) and race 1 (FOC1), both 1395 bp in length and encoding 465 amino acids with a predicted amino-terminal signal sequence of 18 residues, were cloned into the expression vector pPICZaA and then expressed in Pichia pastoris strains of SMD1168. The recombinant PGC2 products, r-FOC1-PGC2 and r-FOC4-PGC2, were expressed and purified as active extracellular proteins. Optimal PGC2 activity was observed at 50°C and pH 5. The Km and Vmax values of purified r-FOC1-PGC2 were 0.43 mg.mL(-1) and 94.34 units mg protein(-1) min(-1), respectively. The Km and Vmax values of purified r-FOC4-PGC2 were 0.48 mg.mL(-1) and 95.24 units mg protein(-1) min(-1), respectively. Both recombinant PGC2 proteins could induce tissue maceration and necrosis in banana plants. CONCLUSIONS: Collectively, these results suggest that PGC2 is the first exoPG reported from the pathogen FOC, and we have shown that fully functional PGC2 can be produced in the P. pastoris expression system.


Asunto(s)
Fusarium/enzimología , Fusarium/patogenicidad , Glicósido Hidrolasas/aislamiento & purificación , Glicósido Hidrolasas/metabolismo , Secuencia de Bases , Clonación Molecular , Medios de Cultivo Condicionados/metabolismo , Fusarium/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/farmacología , Datos de Secuencia Molecular , Musa/citología , Musa/efectos de los fármacos , Musa/microbiología , Necrosis/inducido químicamente , Pichia/genética
19.
J Fungi (Basel) ; 7(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34575749

RESUMEN

Pleurotheciales is the largest order in Savoryellomycetidae with a large proportion of species known from freshwater habitats. In order to investigate the phylogenetic relationships of taxa within Pleurotheciales and contribute to their diversity, submerged wood was collected from freshwater habitats in China (Yunnan Province) and Thailand. Two dematiaceous, sporodochial hyphomycetes and one annulatascales-like ascomycete with unusual morphology as compared to extant ones were discovered. They were subjected to DNA-based phylogenetic analyses and the results revealed three distinct lineages in Savoryellomycetidae. This morpho-phylo taxonomic study supports the establishment of five novel taxa including two novel genera, Obliquifusoideum and Saprodesmium, and three novel species, Coleodictyospora muriformis, Obliquifusoideum guttulatum and Saprodesmium dematiosporum. Coleodictyospora muriformis and S. dematiosporum are placed in Pleurotheciales, while O. guttulatum is referred to Savoryellomycetidae genera incertae sedis. The phylogenetic relationships are also presented for Coleodictyospora and Pseudocoleodictyospora, which raises an intriguing taxonomic issue. These two genera are positioned in two different classes, viz Sordariomycetes and Dothideomycetes, although they are quite similar except for the presence of a conidial sheath. This study expands our knowledge of the fungal diversity of freshwater fungi, and also indicates that Pleurotheciales species are mostly found in freshwater habitats.

20.
Pathogens ; 10(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34578126

RESUMEN

Pogostemon cablin is one of the well-known Southern Chinese medicinal plants with detoxification, anti-bacterial, anti-inflammatory, and other pharmacological functions. Identification and characterization of phytopathogens on P. cablin are of great significance for the prevention and control of diseases. From spring to summer of 2019 and 2020, a leaf spot disease on Pogostemon cablin was observed in Guangdong Province, South China. The pathogen was isolated and identified based on both morphological and DNA molecular approaches. The molecular identification was conducted using multi-gene sequence analysis of large subunit (LSU), the nuclear ribosomal internal transcribed spacer (ITS), beta-tubulin (ß-tubulin), and RNA polymerase II (rpb2) genes. The causal organism was identified as Stagonosporopsis pogostemonis, a novel fungal species. Pathogenicity of Stagonosporopsis pogostemonis on P. cablin was fulfilled via confining the Koch's postulates, causing leaf spots and stem blight disease. This is the first report of leaf spot diseases on P. cablin caused by Stagonosporopsis species worldwide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA