Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 136(10): 4031-9, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24524277

RESUMEN

Chiral molecules, such as alcohols, are vital for the manufacturing of fine chemicals, pharmaceuticals, agrochemicals, fragrances, and novel materials. These molecules need to be produced in high yield and high optical purity and preferentially catalytically. Among all the asymmetric catalytic reactions, asymmetric hydrogenation with H2 (AH) is the most widely used in the industry. With few exceptions, these AH processes use catalysts based on the three critical metals, rhodium, ruthenium, and iridium. Herein we describe a simple, industrially viable iron catalyst that allows for the AH of ketones, a process currently dominated by ruthenium and rhodium catalysts. By combining a chiral, 22-membered macrocyclic ligand with the cheap, readily available Fe3(CO)12, a wide variety of ketones have been hydrogenated under 50 bar H2 at 45-65 °C, affording highly valuable chiral alcohols with enantioselectivities approaching or surpassing those obtained with the noble metal catalysts. In contrast to AH by most noble metal catalysts, the iron-catalyzed hydrogenation appears to be heterogeneous.

2.
Org Lett ; 8(24): 5565-7, 2006 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17107073

RESUMEN

Chiral diaminodiphosphine-Ir(I) complexes were found to efficiently catalyze enantioselective oxidation of racemic secondary alcohols in acetone. In the presence of base, oxidative kinetic resolution of the alcohols proceeded smoothly with excellent enantioselectivity (up to 98% ee) under mild conditions. [reaction: see text].


Asunto(s)
Alcoholes/química , Iridio/química , Compuestos Organometálicos/síntesis química , Acetona/química , Catálisis , Cetonas/química , Cinética , Oxidación-Reducción , Estereoisomerismo
3.
Org Lett ; 7(6): 1043-5, 2005 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-15760134

RESUMEN

[reaction: see text] Catalytic systems generated in situ from the chiral PNNP ligands with iridium or rhodium hydride complexes exhibited excellent catalytic activity and good enantioselectivity in the asymmetric transfer hydrogenation of aromatic ketones without added base. The best result was obtained in the IrH(CO)(PPh(3))(3)-ligand 2 catalytic system with up to 99% yield and 97% ee.

4.
Langmuir ; 23(12): 6819-26, 2007 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-17497810

RESUMEN

The self-assembly of a Wilkinson type of catalyst molecule, trans-RhCl(CO)(PPh3)2, on Au(111) surfaces and its electrocatalytic properties toward the hydrogen evolution reaction (HER) are investigated by employing scanning tunneling microscopy (STM), cyclic voltammetry (CV), and X-ray photoelectron spectroscopy (XPS). The self-assembled monolayers of RhCl(CO)(PPh3)2 are prepared from either dichloromethane or aqueous solutions, but the ordered structures are observed only in atmospheric conditions after solvents evaporate. In the electrolyte solutions, disordered yet uniformly sized spherical clusters of individual molecules are observed as a result of the conformational change of the molecule by the solvation effect of water. The immobilized Rh(I) molecular clusters are electrochemically stable in a wide potential window and exhibit remarkable electrocatalytic activity toward HER in perchloric acid solutions. Several comparative experiments involving similar types of immobilized complexes containing Ru(I) and Ir(I) centers and solution species of RhCl(CO)(PPh3)2 are performed. However, none of them are found to be electroactive to HER. The Tafel slope of HER on the Rh(I) complex modified Au(111) electrode in 0.1 M HClO4 is determined to be -0.061 V, which is almost in the middle of those on bare Au(111) (-0.093 V) and Rh covered (thetaRh approximately 0.3) Au(111) (-0.034 V) electrodes. XPS measurements reveal a valence change of Rh(I) to Rh(0), and an oxidative addition and reductive elimination mechanism is suggested for the enhancement of HER.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA