Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 26(4): 863-872, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31660647

RESUMEN

Designing chromophores for biological applications requires a fundamental understanding of how the chemical structure of a chromophore influences its photophysical properties. We here describe the synthesis of a library of BODIPY dyes, exploring diversity at various positions around the BODIPY core. The results show that the nature and position of substituents have a dramatic effect on the spectroscopic properties. Substituting in a heavy atom or adjusting the size and orientation of a conjugated system provides a means of altering the spectroscopic profiles with high precision. The insight from the structure-activity relationship was applied to devise a new BODIPY dye with rationally designed photochemical properties including absorption towards the near-infrared region. The dye also exhibited switch-on fluorescence to enable visualisation of cells with high signal-to-noise ratio without washing-out of unbound dye. The BODIPY-based probe is non-cytotoxic and compatible with staining procedures including cell fixation and immunofluorescence microscopy.


Asunto(s)
Compuestos de Boro/química , Colorantes Fluorescentes/química , Ionóforos/química , Fluorescencia , Microscopía Fluorescente , Coloración y Etiquetado
2.
Nanomaterials (Basel) ; 9(10)2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31546988

RESUMEN

Two bodipy dyes with different carboxylic acids on the meso-position of the bodipy core were prepared and used to sensitize TiO2 photoelectrodes. On the basis of spectroscopic characterization, the photoelectrodes were used to fabricate photoelectrochemical cells (PECs) for solar light harvesting. Photovoltaic measurements showed that both bodipy dyes successfully sensitized PECs with short-circuit current densities (JSC) two-fold higher compared to the control. The increase in generated current was attributed to the gain in spectral absorbance due to the presence of bodipy. Finally, the influence of co-sensitization of bodipy and N719 dye was also investigated and photovoltaic device performance discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA