Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(7): 107443, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838773

RESUMEN

Functional variants of the gene for the cytokine macrophage migration inhibitory factor (MIF) are defined by a 4-nucleotide promoter microsatellite (-794 CATT5-8, rs5844572) and confer risk for autoimmune, infectious, and oncologic diseases. We describe herein the discovery of a prototypic, small molecule inhibitor of MIF transcription with selectivity for high microsatellite repeat number and correspondingly high gene expression. Utilizing a high-throughput luminescent proximity screen, we identify 1-carbomethoxy-5-formyl-4,6,8-trihydroxyphenazine (CMFT) to inhibit the functional interaction between the transcription factor ICBP90 (namely, UHRF1) and the MIF -794 CATT5-8 promoter microsatellite. CMFT inhibits MIF mRNA expression in a -794 CATT5-8 length-dependent manner with an IC50 of 470 nM, and preferentially reduces ICBP90-dependent MIF mRNA and protein expression in high-genotypic versus low-genotypic MIF-expressing macrophages. RNA expression analysis also showed CMFT to downregulate MIF-dependent, inflammatory gene expression with little evidence of off-target metabolic toxicity. These findings provide proof-of-concept for advancing the pharmacogenomic development of precision-based MIF inhibitors for diverse autoimmune and inflammatory conditions.

2.
FASEB J ; 38(6): e23576, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38530238

RESUMEN

High level expression of the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) has been associated with severe asthma. The role of MIF and its functional promotor polymorphism in innate immune training is currently unknown. Using novel humanized CATT7 MIF mice, this study is the first to investigate the effect of MIF on bone marrow-derived macrophage (BMDM) memory after house dust mite (HDM) challenge. CATT7 BMDMs demonstrated a significant primed increase in M1 markers following HDM and LPS stimulation, compared to naive mice. This M1 signature was found to be MIF-dependent, as administration of a small molecule MIF inhibitor, SCD-19, blocked the induction of this pro-inflammatory M1-like phenotype in BMDMs from CATT7 mice challenged with HDM. Training naive BMDMs in vitro with HDM for 24 h followed by a rest period and subsequent stimulation with LPS led to significantly increased production of the pro-inflammatory cytokine TNFα in BMDMs from CATT7 mice but not WT mice. Addition of the pan methyltransferase inhibitor MTA before HDM training significantly abrogated this effect in BMDMs from CATT7 mice, suggesting that HDM-induced training is associated with epigenetic remodelling. These findings suggest that trained immunity induced by HDM is under genetic control, playing an important role in asthma patients with the high MIF genotypes (CATT6/7/8).


Asunto(s)
Asma , Factores Inhibidores de la Migración de Macrófagos , Humanos , Animales , Ratones , Factores Inhibidores de la Migración de Macrófagos/genética , Lipopolisacáridos/toxicidad , Pyroglyphidae , Asma/genética , Inflamación , Oxidorreductasas Intramoleculares/genética
3.
Cytotherapy ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38819366

RESUMEN

BACKGROUND: Trained immunity results in long-term immunological memory, provoking a faster and greater immune response when innate immune cells encounter a secondary, often heterologous, stimulus. We have previously shown that house dust mite (HDM)-induced innate training is amplified in mice expressing the human macrophage migration inhibitory factor (MIF) CATT7 functional polymorphism. AIM: This study investigated the ability of mesenchymal stromal cells (MSCs) to modulate MIF-driven trained immunity both in vitro and in vivo. METHODS: Compared with wild-type mice, in vivo HDM-primed bone marrow-derived macrophages (BMDMs) from CATT7 mice expressed significantly higher levels of M1-associated genes following lipopolysaccharide stimulation ex vivo. Co-cultures of CATT7 BMDMs with MSCs suppressed this HDM-primed effect, with tumor necrosis factor alpha (TNF-α) being significantly decreased in a cyclooxygenase 2 (COX-2)-dependent manner. Interestingly, interleukin 6 (IL-6) was suppressed by MSCs independently of COX-2. In an in vitro training assay, MSCs significantly abrogated the enhanced production of pro-inflammatory cytokines by HDM-trained CATT7 BMDMs when co-cultured at the time of HDM stimulus on day 0, displaying their therapeutic efficacy in modulating an overzealous human MIF-dependent immune response. Utilizing an in vivo model of HDM-induced trained immunity, MSCs administered systemically on day 10 and day 11 suppressed this trained phenomenon by significantly reducing TNF-α and reducing IL-6 and C-C motif chemokine ligand 17 (CCL17) production. CONCLUSIONS: This novel study elucidates how MSCs can attenuate an MIF-driven, HDM-trained response in CATT7 mice in a model of allergic airway inflammation.

4.
FASEB J ; 37(8): e23072, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37498233

RESUMEN

Macrophage migration inhibitory factor (MIF) expression is controlled by a functional promoter polymorphism, where the number of tetranucleotide repeats (CATTn ) corresponds to the level of MIF expression. To examine the role of this polymorphism in a pre-clinical model of allergic asthma, novel humanized MIF mice with increasing CATT repeats (CATT5 and CATT7 ) were used to generate a physiologically relevant scale of airway inflammation following house dust mite (HDM) challenge. CATT7 mice expressing high levels of human MIF developed an aggressive asthma phenotype following HDM challenge with significantly elevated levels of immune cell infiltration, production of inflammatory mediators, goblet cell hyperplasia, subepithelial collagen deposition, and airway resistance compared to wild-type controls. Importantly the potent MIF inhibitor SCD-19 significantly mitigated the pathophysiology observed in CATT7 mice after HDM challenge, demonstrating the fundamental role of endogenous human MIF expression in the severity of airway inflammation in vivo. Up to now, there are limited reproducible in vivo models of asthma airway remodeling. Current asthma medications are focused on reducing the acute inflammatory response but have limited effects on airway remodeling. Here, we present a reproducible pre-clinical model that capitulates asthma airway remodeling and suggests that in addition to having pro-inflammatory effects MIF may play a role in driving airway remodeling.


Asunto(s)
Asma , Factores Inhibidores de la Migración de Macrófagos , Humanos , Animales , Ratones , Pyroglyphidae , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Pulmón/metabolismo , Inflamación/metabolismo , Modelos Animales de Enfermedad , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo
5.
Mol Ther ; 31(11): 3243-3258, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37735872

RESUMEN

Current asthma therapies focus on reducing symptoms but fail to restore existing structural damage. Mesenchymal stromal cell (MSC) administration can ameliorate airway inflammation and reverse airway remodeling. However, differences in patient disease microenvironments seem to influence MSC therapeutic effects. A polymorphic CATT tetranucleotide repeat at position 794 of the human macrophage migration inhibitory factor (hMIF) gene has been associated with increased susceptibility to and severity of asthma. We investigated the efficacy of human MSCs in high- vs. low-hMIF environments and the impact of MIF pre-licensing of MSCs using humanized MIF mice in a clinically relevant house dust mite (HDM) model of allergic asthma. MSCs significantly attenuated airway inflammation and airway remodeling in high-MIF-expressing CATT7 mice but not in CATT5 or wild-type littermates. Differences in efficacy were correlated with increased MSC retention in the lungs of CATT7 mice. MIF licensing potentiated MSC anti-inflammatory effects at a previously ineffective dose. Mechanistically, MIF binding to CD74 expressed on MSCs leads to upregulation of cyclooxygenase 2 (COX-2) expression. Blockade of CD74 or COX-2 function in MSCs prior to administration attenuated the efficacy of MIF-licensed MSCs in vivo. These findings suggest that MSC administration may be more efficacious in severe asthma patients with high MIF genotypes (CATT6/7/8).


Asunto(s)
Asma , Factores Inhibidores de la Migración de Macrófagos , Células Madre Mesenquimatosas , Animales , Humanos , Ratones , Remodelación de las Vías Aéreas (Respiratorias) , Asma/terapia , Ciclooxigenasa 2/genética , Inflamación/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Células Madre Mesenquimatosas/metabolismo
6.
Am J Respir Crit Care Med ; 207(9): 1194-1202, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36602845

RESUMEN

Rationale: Idiopathic pulmonary fibrosis (IPF) is a rare, irreversible, and progressive disease of the lungs. Common genetic variants, in addition to nongenetic factors, have been consistently associated with IPF. Rare variants identified by candidate gene, family-based, and exome studies have also been reported to associate with IPF. However, the extent to which rare variants, genome-wide, may contribute to the risk of IPF remains unknown. Objectives: We used whole-genome sequencing to investigate the role of rare variants, genome-wide, on IPF risk. Methods: As part of the Trans-Omics for Precision Medicine Program, we sequenced 2,180 cases of IPF. Association testing focused on the aggregated effect of rare variants (minor allele frequency ⩽0.01) within genes or regions. We also identified individual rare variants that are influential within genes and estimated the heritability of IPF on the basis of rare and common variants. Measurements and Main Results: Rare variants in both TERT and RTEL1 were significantly associated with IPF. A single rare variant in each of the TERT and RTEL1 genes was found to consistently influence the aggregated test statistics. There was no significant evidence of association with other previously reported rare variants. The SNP heritability of IPF was estimated to be 32% (SE = 3%). Conclusions: Rare variants within the TERT and RTEL1 genes and well-established common variants have the largest contribution to IPF risk overall. Efforts in risk profiling or the development of therapies for IPF that focus on TERT, RTEL1, common variants, and environmental risk factors are likely to have the largest impact on this complex disease.


Asunto(s)
Fibrosis Pulmonar Idiopática , Humanos , Fibrosis Pulmonar Idiopática/genética , Secuenciación Completa del Genoma , Exoma
7.
Am J Respir Crit Care Med ; 205(5): 550-562, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985402

RESUMEN

Rationale: The Toll-like receptor 3 Leu412Phe (TLR3 L412F) polymorphism attenuates cellular antiviral responses and is associated with accelerated disease progression in idiopathic pulmonary fibrosis (IPF). The role of TLR3 L412F in bacterial infection in IPF or in acute exacerbations (AE) has not been reported. Objectives: To characterize the association between TLR3 L412F and AE-related death in IPF. To determine the effect of TLR3 L412F on the lung microbiome and on antibacterial TLR responses of primary lung fibroblasts from patients with IPF. Methods: TLR-mediated antibacterial and antiviral responses were quantitated in L412F wild-type and 412F-heterozygous primary lung fibroblasts from patients with IPF using ELISA, Western blot analysis, and quantitative PCR. Hierarchical heatmap analysis was employed to establish bacterial and viral clustering in nasopharyngeal lavage samples from patients with AE-IPF. 16S ribosomal RNA quantitative PCR and pyrosequencing were used to determine the effect of TLR3 L412F on the IPF lung microbiome. Measurements and Main Results: A significant increase in AE-related death in patients with 412F-variant IPF was reported. We established that 412F-heterozygous IPF lung fibroblasts have reduced antibacterial TLR responses to LPS (TLR4), Pam3CYSK4 (TLR1/2), flagellin (TLR5), and FSL-1 (TLR6/1) and have reduced responses to live Pseudomonas aeruginosa infection. Using 16S ribosomal RNA sequencing, we demonstrated that 412F-heterozygous patients with IPF have a dysregulated lung microbiome with increased frequencies of Streptococcus and Staphylococcus spp. Conclusions: This study reveals that TLR3 L412F dysregulates the IPF lung microbiome and reduces the responses of IPF lung fibroblasts to bacterial TLR agonists and live bacterial infection. These findings identify a candidate role for TLR3 L412F in viral- and bacterial-mediated AE death.


Asunto(s)
Fibrosis Pulmonar Idiopática , Receptor Toll-Like 3/genética , Antibacterianos , Antivirales , Progresión de la Enfermedad , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/microbiología , ARN Ribosómico 16S
8.
Immunology ; 166(3): 287-298, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35416298

RESUMEN

Gram-negative Pseudomonas bacteria are largely harmless saprotrophs, but some species can be potent pathogens of both plants and mammals. Macrophage migration-inhibitory factor (MIF) and its homologue D-dopachrome tautomerase (D-DT, also referred to as MIF-2) are multifunctional proteins that in addition to their intracellular functions also serve as extracellular signalling molecules (cytokines) in orchestrating mammalian immune responses. It recently emerged that plants also possess MIF-like proteins, termed MIF/D-DT-like (MDL) proteins. We here provide a comparative cross-kingdom view on the immunomodulatory role of MIF and MDL proteins during Pseudomon as infections in mammals and plants. Although in both kingdoms the lack of MIF/MDL proteins is associated with a reduction in bacterial load and disease symptoms, the underlying molecular principles seem to be different. We provide a perspective for future research activities to unravel additional commonalities and differences in the MIF/MDL-mediated adjustment of antibacterial immune activities.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , Infecciones por Pseudomonas , Animales , Inmunidad , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Mamíferos/metabolismo , Unión Proteica
9.
Thorax ; 76(10): 1047-1056, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33712504

RESUMEN

To explore the role of extracellular vesicles (EVs) in chronic lung diseases.EVs are emerging as mediators of intercellular communication and possible diagnostic markers of disease. EVs harbour cargo molecules including RNA, lipids and proteins that they transfer to recipient cells. EVs are intercellular communicators within the lung microenvironment. Due to their disease-specific cargoes, EVs have the promise to be all-in-one complex multimodal biomarkers. EVs also have potential as drug carriers in chronic lung disease.Descriptive discussion of key studies of EVs as contributors to disease pathology, as biomarkers and as potential therapies with a focus on chronic obstructive pulmonary disorder (COPD), cystic fibrosis (CF), asthma, idiopathic pulmonary fibrosis and lung cancer.We provide a broad overview of the roles of EV in chronic respiratory disease. Recent advances in profiling EVs have shown their potential as biomarker candidates. Further studies have provided insight into their disease pathology, particularly in inflammatory processes across a spectrum of lung diseases. EVs are on the horizon as new modes of drug delivery and as therapies themselves in cell-based therapeutics.EVs are relatively untapped sources of information in the clinic that can help further detail the full translational nature of chronic lung disorders.


Asunto(s)
Fibrosis Quística , Vesículas Extracelulares , Fibrosis Pulmonar Idiopática , Comunicación Celular , Humanos , Pulmón
10.
Respir Res ; 22(1): 133, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33926483

RESUMEN

Nutritional immunity is the sequestration of bioavailable trace metals such as iron, zinc and copper by the host to limit pathogenicity by invading microorganisms. As one of the most conserved activities of the innate immune system, limiting the availability of free trace metals by cells of the immune system serves not only to conceal these vital nutrients from invading bacteria but also operates to tightly regulate host immune cell responses and function. In the setting of chronic lung disease, the regulation of trace metals by the host is often disrupted, leading to the altered availability of these nutrients to commensal and invading opportunistic pathogenic microbes. Similarly, alterations in the uptake, secretion, turnover and redox activity of these vitally important metals has significant repercussions for immune cell function including the response to and resolution of infection. This review will discuss the intricate role of nutritional immunity in host immune cells of the lung and how changes in this fundamental process as a result of chronic lung disease may alter the airway microbiome, disease progression and the response to infection.


Asunto(s)
Inmunidad Adaptativa , Asma/inmunología , Enfermedades Transmisibles/inmunología , Inmunidad Innata , Pulmón/inmunología , Metales/inmunología , Microbiota , Estado Nutricional , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Animales , Asma/microbiología , Asma/fisiopatología , Asma/virología , Enfermedades Transmisibles/microbiología , Enfermedades Transmisibles/fisiopatología , Enfermedades Transmisibles/virología , Interacciones Huésped-Patógeno , Humanos , Pulmón/microbiología , Pulmón/fisiopatología , Pulmón/virología , Metales/metabolismo , Pronóstico , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/virología
11.
BMC Cancer ; 20(1): 916, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32972386

RESUMEN

BACKGROUND: Lung cancer is a leading cause of cancer morbidity and mortality worldwide. Several studies have suggested that Human papillomavirus (HPV) infection is an important risk factor in the development of lung cancer. In this study, we aim to address the role of HPV in the development of lung cancer mechanistically by examining the induction of inflammation and epithelial-mesenchymal transition (EMT) by this virus. METHODS: In this case-control study, tissue samples were collected from 102 cases with lung cancer and 48 controls. We examined the presence of HPV DNA and also the viral genotype in positive samples. We also examined the expression of viral genes (E2, E6 and E7), anti-carcinogenic genes (p53, retinoblastoma (RB)), and inflammatory cytokines in HPV positive cases. RESULTS: HPV DNA was detected in 52.9% (54/102) of the case samples and in 25% (12/48) of controls. A significant association was observed between a HPV positive status and lung cancer (OR = 3.37, 95% C.I = 1.58-7.22, P = 0.001). The most prevalent virus genotype in the patients was type 16 (38.8%). The expression of p53 and RB were decreased while and inflammatory cytokines were increased in HPV-positive lung cancer and HPV-positive control tissues compared to HPV-negative lung cancer and HPV-negative control tissues. Also, the expression level of E-cad and PTPN-13 genes were decreased in HPV- positive samples while the expression level of SLUG, TWIST and N-cad was increased in HPV-positive samples compared to negative samples. CONCLUSION: Our study suggests that HPV infection drives the induction of inflammation and EMT which may promote in the development of lung cancer.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Expresión Génica/genética , Inmunidad Celular/genética , Inflamación/genética , Infecciones por Papillomavirus/genética , Estudios de Casos y Controles , Femenino , Humanos , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad
12.
Thorax ; 74(10): 965-976, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31285360

RESUMEN

Nanomedicine is a multidisciplinary research field with an integration of traditional sciences such as chemistry, physics, biology and materials science. The application of nanomedicine for lung diseases as a relatively new area of interdisciplinary science has grown rapidly over the last 10 years. Promising research outcomes suggest that nanomedicine will revolutionise the practice of medicine, through the development of new approaches in therapeutic agent delivery, vaccine development and nanotechnology-based medical detections. Nano-based approaches in the diagnosis and treatment of lung diseases will, in the not too distant future, change the way we practise medicine. This review will focus on the current trends and developments in the clinical translation of nanomedicine for lung diseases, such as in the areas of lung cancer, cystic fibrosis, asthma, bacterial infections and COPD.


Asunto(s)
Investigación Biomédica , Sistemas de Liberación de Medicamentos/tendencias , Enfermedades Pulmonares/terapia , Nanomedicina/métodos , Nanotecnología/métodos , Humanos
13.
Thorax ; 73(2): 134-144, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28916704

RESUMEN

BACKGROUND: Cystic fibrosis (CF) lung disease is defined by large numbers of neutrophils and associated damaging products in the airway. Delayed neutrophil apoptosis is described in CF although it is unclear whether this is a primary neutrophil defect or a response to chronic inflammation. Increased levels of neutrophil extracellular traps (NETs) have been measured in CF and we aimed to investigate the causal relationship between these phenomena and their potential to serve as a driver of inflammation. We hypothesised that the delay in apoptosis in CF is a primary defect and preferentially allows CF neutrophils to form NETs, contributing to inflammation. METHODS: Blood neutrophils were isolated from patients with CF, CF pigs and appropriate controls. Neutrophils were also obtained from patients with CF before and after commencing ivacaftor. Apoptosis was assessed by morphology and flow cytometry. NET formation was determined by fluorescent microscopy and DNA release assays. NET interaction with macrophages was examined by measuring cytokine generation with ELISA and qRT-PCR. RESULTS: CF neutrophils live longer due to decreased apoptosis. This was observed in both cystic fibrosis transmembrane conductance regulator (CFTR) null piglets and patients with CF, and furthermore was reversed by ivacaftor (CFTR potentiator) in patients with gating (G551D) mutations. CF neutrophils formed more NETs and this was reversed by cyclin-dependent kinase inhibitor exposure. NETs provided a proinflammatory stimulus to macrophages, which was enhanced in CF. CONCLUSIONS: CF neutrophils have a prosurvival phenotype that is associated with an absence of CFTR function and allows increased NET production, which can in turn induce inflammation. Augmenting neutrophil apoptosis in CF may allow more appropriate neutrophil disposal, decreasing NET formation and thus inflammation.


Asunto(s)
Apoptosis/fisiología , Fibrosis Quística/patología , Trampas Extracelulares , Neutrófilos/fisiología , Adulto , Animales , Estudios de Casos y Controles , Supervivencia Celular , Fibrosis Quística/sangre , Fibrosis Quística/inmunología , Humanos , Inflamación , Porcinos , Factores de Tiempo
14.
FASEB J ; 31(11): 5102-5110, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28768722

RESUMEN

Macrophage migration inhibitory factor (MIF) is a key proinflammatory mediator that we have previously shown to be associated with an aggressive clinical phenotype in cystic fibrosis. It possesses unique tautomerase enzymatic activity. However, to date, no human-derived substrate has been identified that has the capacity to interact with this cytokine's unique tautomerase activity. This led us to hypothesize that MIF may have the capacity to interact with external substrates. We describe for the first time how Pseudomonas aeruginosa can utilize human recombinant MIF (rMIF) to significantly (P < 0.01) enhance its endogenous biofilm formation. Our in vivo studies demonstrate that utilizing a small-molecular-weight inhibitor targeting MIF's tautomerase activity (SCD-19) significantly reduces the inflammatory response in a murine pulmonary chronic P. aeruginosa model. In addition, we show that in in vitro experiments, pretreatment of P. aeruginosa with rMIF is associated with reduced bacterial killing by tobramycin. Our novel findings support the concept of an anti-MIF strategy that targets this enzymatic activity as a potential future antibacterial therapeutic approach.-Tynan, A., Mawhinney, L., Armstrong, M. E., O'Reilly, C., Kennedy, S., Caraher, E., Jülicher, K., O'Dwyer, D., Maher, L., Schaffer, K., Fabre, A., McKone, E. F., Leng, L., Bucala, R., Bernhagen, J., Cooke, G., Donnelly, S. C. Macrophage migration inhibitory factor enhances Pseudomonas aeruginosa biofilm formation, potentially contributing to cystic fibrosis pathogenesis.


Asunto(s)
Fibrosis Quística/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Pseudomonas aeruginosa/fisiología , Animales , Biopelículas/crecimiento & desarrollo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/microbiología , Modelos Animales de Enfermedad , Oxidorreductasas Intramoleculares/farmacología , Factores Inhibidores de la Migración de Macrófagos/farmacología , Ratones , Proteínas Recombinantes/farmacología , Tobramicina/farmacología
15.
Am J Respir Crit Care Med ; 195(12): 1617-1628, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28222269

RESUMEN

RATIONALE: Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. OBJECTIVES: To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. METHODS: We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. MEASUREMENTS AND MAIN RESULTS: Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. CONCLUSIONS: Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.


Asunto(s)
Aminofenoles/uso terapéutico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Fibrosis Quística/tratamiento farmacológico , Inflamación/prevención & control , Quinolonas/uso terapéutico , Infecciones del Sistema Respiratorio/prevención & control , Adulto , Agonistas de los Canales de Cloruro/uso terapéutico , Fibrosis Quística/diagnóstico por imagen , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Masculino , Infecciones del Sistema Respiratorio/metabolismo , Esputo/efectos de los fármacos , Esputo/metabolismo , Tomografía Computarizada por Rayos X
16.
J Immunol ; 195(6): 2788-96, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26268659

RESUMEN

Epithelial to mesenchymal cell transition (EMT), whereby fully differentiated epithelial cells transition to a mesenchymal phenotype, has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). CXCR3 and its ligands are recognized to play a protective role in pulmonary fibrosis. In this study, we investigated the presence and extent of EMT and CXCR3 expression in human IPF surgical lung biopsies and assessed whether CXCR3 and its ligand CXCL9 modulate EMT in alveolar epithelial cells. Coexpression of the epithelial marker thyroid transcription factor-1 and the mesenchymal marker α-smooth muscle actin and CXCR3 expression was examined by immunohistochemical staining of IPF surgical lung biopsies. Epithelial and mesenchymal marker expression was examined by quantitative real-time PCR, Western blotting, and immunofluorescence in human alveolar epithelial (A549) cells treated with TGF-ß1 and CXCL9, with Smad2, Smad3, and Smad7 expression and cellular localization examined by Western blotting. We found that significantly more cells were undergoing EMT in fibrotic versus normal areas of lung in IPF surgical lung biopsy samples. CXCR3 was expressed by type II pneumocytes and fibroblasts in fibrotic areas in close proximity to cells undergoing EMT. In vitro, CXCL9 abrogated TGF-ß1-induced EMT. A decrease in TGF-ß1-induced phosphorylation of Smad2 and Smad3 occurred with CXCL9 treatment. This was associated with increased shuttling of Smad7 from the nucleus to the cytoplasm where it inhibits Smad phosphorylation. This suggests a role for EMT in the pathogenesis of IPF and provides a novel mechanism for the inhibitory effects of CXCL9 on TGF-ß1-induced EMT.


Asunto(s)
Quimiocina CXCL9/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Fibrosis Pulmonar Idiopática/patología , Mucosa Respiratoria/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Actinas/biosíntesis , Biomarcadores/metabolismo , Línea Celular , Quimiocina CXCL9/farmacología , Células Epiteliales/metabolismo , Humanos , Proteínas Nucleares/biosíntesis , Fosforilación , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , Receptores CXCR3/biosíntesis , Receptores CXCR3/metabolismo , Mucosa Respiratoria/citología , Proteína Smad2/biosíntesis , Proteína smad3/biosíntesis , Proteína smad7/biosíntesis , Factor Nuclear Tiroideo 1 , Factores de Transcripción/biosíntesis , Factor de Crecimiento Transformador beta1/farmacología
17.
Proc Natl Acad Sci U S A ; 111(1): 367-72, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24344271

RESUMEN

Disease conditions associated with pulmonary fibrosis are progressive and have a poor long-term prognosis with irreversible changes in airway architecture leading to marked morbidity and mortalities. Using murine models we demonstrate a role for interleukin (IL)-25 in the generation of pulmonary fibrosis. Mechanistically, we identify IL-13 release from type 2 innate lymphoid cells (ILC2) as sufficient to drive collagen deposition in the lungs of challenged mice and suggest this as a potential mechanism through which IL-25 is acting. Additionally, we demonstrate that in human idiopathic pulmonary fibrosis there is increased pulmonary expression of IL-25 and also observe a population ILC2 in the lungs of idiopathic pulmonary fibrosis patients. Collectively, we present an innate mechanism for the generation of pulmonary fibrosis, via IL-25 and ILC2, that occurs independently of T-cell-mediated antigen-specific immune responses. These results suggest the potential of therapeutically targeting IL-25 and ILC2 for the treatment of human fibrotic diseases.


Asunto(s)
Regulación de la Expresión Génica , Interleucina-17/metabolismo , Interleucinas/metabolismo , Linfocitos/citología , Fibrosis Pulmonar/metabolismo , Anciano , Animales , Moléculas de Adhesión Celular/metabolismo , Colágeno/química , Colágeno/metabolismo , Femenino , Humanos , Fibrosis Pulmonar Idiopática/patología , Inmunidad Innata , Inflamación , Interleucina-13/metabolismo , Hígado/parasitología , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Persona de Mediana Edad , Fibrosis Pulmonar/patología , Schistosoma mansoni
18.
Med Res Rev ; 36(3): 440-60, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26777977

RESUMEN

Strong evidence has been presented linking chronic inflammation to the onset and pathogenesis of cancer. The multifunctional pro-inflammatory protein macrophage migration inhibitory factor (MIF) occupies a central role in the inflammatory pathway and has been implicated in the tumorigenesis, angiogenesis, and metastasis of many cancer phenotypes. This review highlights the current state of the art, which presents MIF, and the second member of the MIF structural superfamily, D-DT (MIF2), as significant mediators in the inflammatory-cancer axis. Although the mechanism by which MIF asserts its biological activity has yet to be fully understood, it has become clear in recent years that for certain phenotypes of cancer, MIF represents a valid therapeutic target. Current research efforts have focused on small molecule approaches that target MIF's unique tautomerase active site and neutralization of MIF with anti-MIF antibodies. These approaches have yielded promising results in a number of preclinical murine cancer models and have helped to increase our understanding of MIF biological activity. More recently, MIF's involvement in a number of key protein-protein interactions, such as with CD74 and HSP90, has been highlighted and provides a novel platform for the development of anti-MIF chemotherapeutic strategies in the future.


Asunto(s)
Oxidorreductasas Intramoleculares/efectos de los fármacos , Factores Inhibidores de la Migración de Macrófagos/efectos de los fármacos , Neoplasias/terapia , Humanos , Oxidorreductasas Intramoleculares/química , Factores Inhibidores de la Migración de Macrófagos/química , Neoplasias/metabolismo
19.
Am J Respir Cell Mol Biol ; 53(2): 217-25, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25514189

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by fibrosis and abnormal vascularity. IL-13, a profibrotic cytokine that plays a role in IPF, functions through the Jak/STAT pathway after binding to the IL-13 receptor α1 (IL-13Rα1)/IL-4Rα complex. IL-13 also binds to IL-13Rα2, which has been thought to function as a nonsignaling decoy receptor, although possible signaling roles of this receptor have been proposed. CXCR3 and its IFN-inducible ligands-CXCL9, CXCL10, and CXCL11-have been implicated in vascular remodeling and fibroblast motility during the development of IPF. In this study, CXCR3 expression was demonstrated in cultured pulmonary fibroblasts from wild-type BALB/c mice and was found to be necessary for the IL-13-mediated gene and protein up-regulation of IL-13Rα2. In fibroblasts from CXCR3-deficient mice, STAT6 activation was prolonged. This study is the first to demonstrate the expression of CXCR3 in fibroblasts and its association with the expression of IL-13Rα2. Taken together, the results from this study point strongly to a requirement for CXCR3 for IL-13-mediated IL-13Rα2 gene expression. Understanding the function of CXCR3 in IL-13-mediated lung injury may lead to novel approaches to combat the development of pulmonary fibrosis, whether by limiting the effects of IL-13 or by manipulation of angiostatic pathways. The elucidation of the complex relationship between these antifibrotic receptors and manipulation of the CXCR3-mediated regulation of IL-13Rα2 may represent a novel therapeutic modality in cases of acute lung injury or chronic inflammation that may progress to fibrosis.


Asunto(s)
Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Subunidad alfa2 del Receptor de Interleucina-13/genética , Interleucina-13/fisiología , Receptores CXCR3/fisiología , Animales , Células Cultivadas , Femenino , Expresión Génica , Regulación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/patología , Subunidad alfa2 del Receptor de Interleucina-13/metabolismo , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos BALB C , Ratones Noqueados , Regulación hacia Arriba
20.
Am J Physiol Lung Cell Mol Physiol ; 308(7): L710-8, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25659898

RESUMEN

Pulmonary fibrosis is a progressive and fatal disease that involves the remodeling of the distal airspace and the lung parenchyma, which results in compromised gas exchange. The median survival time once diagnosed is less than three years. Interleukin (IL)-13 has been shown to play a role in a number of inflammatory and fibrotic diseases. IL-13 modulates its effector functions via a complex receptor system that includes the IL-4 receptor (R) α, IL-13Rα1, and the IL-13Rα2. IL-13Rα1 binds IL-13 with low affinity, yet, when it forms a complex with IL-4α, it binds with much higher affinity, inducing the effector functions of IL-13. IL-13Rα2 binds IL-13 with high affinity but has a short cytoplasmic tail and has been shown to act as a nonsignaling decoy receptor. Transfection of fibroblasts and epithelial cells with IL-13Rα2 inhibited the IL-13 induction of soluble collagen, TGF-ß, and CCL17. Adenoviral overexpression of IL-13Rα2 in the lung reduced bleomycin-induced fibrosis. Our work shows that overexpression of IL-13Rα2 inhibits the IL-13 induction of fibrotic markers in vitro and inhibits bleomycin-induced pulmonary fibrosis. In summary our study highlights the antifibrotic nature of IL-13Ra2.


Asunto(s)
Subunidad alfa2 del Receptor de Interleucina-13/fisiología , Fibrosis Pulmonar/metabolismo , Animales , Bleomicina , Quimiocina CCL17/biosíntesis , Colágeno/biosíntesis , Células HEK293 , Humanos , Interleucina-13/fisiología , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Fibrosis Pulmonar/inducido químicamente , Factor de Crecimiento Transformador beta/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA