Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Neurobiol Dis ; 156: 105406, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34044148

RESUMEN

In view of the negative regulatory effect of leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 1 (LINGO-1) on neurons, an antibody against LINGO-1 (anti-LINGO-1 antibody) was herein administered to 10-month-old APP/PS1 transgenic Alzheimer's disease (AD) mice for 2 months as an experimental intervention. Behavioral, stereology, immunohistochemistry and immunofluorescence analyses revealed that the anti-LINGO-1 antibody significantly improved the cognitive abilities, promoted adult hippocampal neurogenesis (AHN), decreased the amyloid beta (Aß) deposition, enlarged the hippocampal volume, and increased the numbers of total neurons and GABAergic interneurons, including GABAergic and CCK-GABAergic interneurons rich in cannabinoid type 1 receptor (CB1R), in the hippocampus of AD mice. In contrast, this intervention significantly reduced the number of GABAergic interneurons expressing LINGO-1 and CB1R in the hippocampus of AD mice. More importantly, we also found a negative correlation between LINGO-1 and CB1R on GABAergic interneurons in the hippocampus of AD mice, while the anti-LINGO-1 antibody reversed this relationship. These results indicated that LINGO-1 plays an important role in the process of hippocampal neuron loss in AD mice and that antagonizing LINGO-1 can effectively prevent hippocampal neuron loss and promote AHN. The improvement in cognitive abilities may be attributed to the improvement in AHN, and in the numbers of GABAergic interneurons and CCK-GABAergic interneurons rich in CB1Rs in the hippocampus of AD mice induced by the anti-LINGO-1 antibody. Collectively, the double target effect (LINGO-1 and CB1R) initiated by the anti-LINGO-1 antibody may provide an important basis for the study of drugs for the prevention and treatment of AD in the future.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Disfunción Cognitiva/metabolismo , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptor Cannabinoide CB1/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Anticuerpos Monoclonales/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Neuronas GABAérgicas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Receptor Cannabinoide CB1/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo
2.
Biomol Biomed ; 2024 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-38943679

RESUMEN

Liver fibrosis, a common characteristic in various chronic liver diseases, is largely influenced by glycolysis. Quercetin (QE), a natural flavonoid known to regulate glycolysis, was studied for its effects on liver fibrosis and its underlying mechanism. In a model of liver fibrosis induced by carbon tetrachloride (CCl4), we aimed to assess pathological features, serum marker levels, and analyze the expression of glycolysis-related enzymes at both mRNA and protein levels, with a focus on changes in liver sinusoidal endothelial cells (LSECs). Our results showed that QE effectively improved liver injury and fibrosis evident by improved pathological features and lowered levels of serum markers, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), γ-glutamyl transferase (GGT), total bile acid (TBA), total bilirubin (TBIL), direct bilirubin (DBIL), hyaluronic acid (HA), laminin (LN), and procollagen type III (PCIII). QE also decreased lactate production and downregulated the expression of glycolysis-related enzymes­pyruvate kinase M2 (PKM2), phosphofructokinase platelet (PFKP), and hexokinase II (HK2)­at both the mRNA and protein levels. QE reduced the expression and activity of these enzymes, resulting in reduced glucose consumption, adenosine triphosphate (ATP) production, and lactate generation. Further analysis revealed that QE inhibited the production of chemokine (C-X-C motif) ligand 1 (CXCL1) and suppressed neutrophil recruitment. Overall, QE showed promising therapeutic potential for liver fibrosis by targeting LSEC glycolysis and reducing neutrophil infiltration.

3.
Pharmacol Biochem Behav ; 239: 173750, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38494007

RESUMEN

Although the antidepressant effects of running exercise have been widely reported, further research is still needed to determine the structural bases for these effects. Astrocyte processes physically contact many synapses and directly regulate the numbers of synapses, but it remains unclear whether running exercise can modulate astrocyte morphological complexity and astrocyte-contacted synapses in the hippocampus of the mice with depressive-like behavior. Male C57BL/6 J mice underwent four weeks of running exercise after four weeks of chronic unpredictable stress (CUS). The sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST) were used to assess anhedonia in mice. Western blotting was used to measure the expression of astrocyte- and synapse-related proteins. Immunofluorescence and 3D reconstruction were used to quantify the density and morphology of astrocytes, and astrocyte-contacted synapses in each hippocampal subregion. Four weeks of running exercise alleviated depressive-like symptoms in mice. The expression of astrocyte- and synapse-related proteins in the hippocampus; astrocyte process lengths, process numbers, and dendritic arborization; and the number of astrocyte-contacted PSD95 positive synapses in the CA2-3 and DG regions were significantly decreased in the mice with depressive-like behavior, and running exercise successfully reserved these changes. Running exercise improved the decreases in astrocyte morphological complexity and astrocyte-contacted PSD95 positive synapses in the CA2-3 and DG regions of the mice with depressive-like behavior, suggesting that the physical interactions between astrocytes and synapses can be increased by running exercise, which might be an important structural basis for the antidepressant effects of running exercise.


Asunto(s)
Astrocitos , Depresión , Modelos Animales de Enfermedad , Hipocampo , Ratones Endogámicos C57BL , Condicionamiento Físico Animal , Sinapsis , Animales , Astrocitos/metabolismo , Masculino , Sinapsis/patología , Sinapsis/fisiología , Hipocampo/patología , Hipocampo/metabolismo , Ratones , Condicionamiento Físico Animal/fisiología , Depresión/terapia , Estrés Psicológico/terapia , Estrés Psicológico/metabolismo , Carrera/fisiología
4.
Biomater Res ; 27(1): 9, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759928

RESUMEN

BACKGROUND: Although programmed cell death protein 1 (PD-1)/ programmed cell death-ligand protein 1 (PD-L1) checkpoint blockade immunotherapy demonstrates great promise in cancer treatment, poor infiltration of T cells resulted from tumor immunosuppressive microenvironment (TIME) and insufficient accumulation of anti-PD-L1 (αPD-L1) in tumor sites diminish the immune response. Herein, we reported a drug-loaded microbubble delivery system to overcome these obstacles and enhance PD-L1 blockade immunotherapy. METHODS: Docetaxel (DTX) and imiquimod (R837)-loaded microbubbles (RD@MBs) were synthesized via a typical rotary evaporation method combined with mechanical oscillation. The targeted release of drugs was achieved by using the directional "bursting" capability of ultrasound-targeted microbubble destruction (UTMD) technology. The antitumor immune response by RD@MBs combining αPD-L1 were evaluated on 4T1 and CT26 tumor models. RESULTS: The dying tumor cells induced by DTX release tumor-associated antigens (TAAs), together with R837, promoted the activation, proliferation and recruitment of T cells. Besides, UTMD technology and DTX enhanced the accumulation of αPD-L1 in tumor sites. Moreover, RD@MBs remolded TIME, including the polarization of M2-phenotype tumor-associated macrophages (TAMs) to M1-phenotype, and reduction of myeloid-derived suppressor cells (MDSCs). The RD@MBs + αPD-L1 synergistic therapy not only effectively inhibited the growth of primary tumors, but also significantly inhibited the mimic distant tumors as well as lung metastases. CONCLUSION: PD-L1 blockade immunotherapy was enhanced by RD@MBs delivery system.

5.
J Affect Disord ; 332: 72-82, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36997126

RESUMEN

BACKGROUND: N-methyl-d-aspartate receptor (NMDAR) has been implicated in the pathophysiology of depression. However, as the unique inhibitory subunit of NMDARs, the role of GluN3A in depression is largely unclear. METHODS: Firstly, expression of GluN3A was examined in a mouse model of depression induced by chronic restraint stress (CRS). Then, rescue experiment with rAAV-Grin3a injection into hippocampus of CRS mice was carried out. Lastly, GluN3A knockout (KO) mouse was generated via CRISPR/Cas9 technique, and the molecular mechanism underlying involvement of GluN3A in depression was initially explored using RNA-seq technique, RT-PCR and western blotting. RESULTS: GluN3A expression in hippocampus was significantly decreased in CRS mice. Depression-like behaviors induced by CRS were ameliorated when the decrease of GluN3A expression in mice exposed to CRS was restored. GluN3A KO mice exhibited symptoms of anhedonia reported as reduced sucrose preference, and symptoms of despair assayed by a longer immobility time in FST. Transcriptome analysis revealed genetic ablation of GluN3A was associated with downregulation of genes implicated in synapse and axon development. Postsynaptic protein PSD95 was decreased in GluN3A KO mice. More importantly, reduction of PSD95 in CRS mice can be rescued by viral mediated Grin3a re-expression. LIMITATIONS: The mechanism underlying GluN3A involvement in depression is not fully determined. CONCLUSIONS: Our data suggested that GluN3A dysfunction is involved in depression, which might be mediated by synaptic deficits. These findings will facilitate the understanding of the role of GluN3A in depression, and they might provide a new strategy for the development of subunit-selective NMDAR antagonists as antidepressant drugs.


Asunto(s)
Depresión , Sinapsis , Ratones , Animales , Depresión/genética , Ratones Noqueados , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Acta Biomater ; 160: 239-251, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36774974

RESUMEN

M2-like tumor-associated macrophages (TAMs) typically exhibit numerous tumor-promoting properties. Reducing the abundance of M2-like TAMs would shed light on the relief of immunosuppressive tumor microenvironment (TME), activation of the host immune system, infiltration of CD8+ T cells into the TME and restoring the function of the infiltrating T cells, which collectively inhibits tumor growth. Therefore, targeted depletion of M2-like TAMs can be a promising immunotherapy approach. In this study, we rationally constructed an M2-like TAMs-targeted nanoliposome, which encapsulates zoledronic acid (ZA) in the core, loads hematoporphyrin monomethyl ether (HMME, a typical sonosensitizer) in the lipid bilayer, and modifies M2pep peptide (the targeting unit) on the surface (designated as M-H@lip-ZA). Our aim is to validate the effectiveness of M-H@lip-ZA nanoliposomes to remodel TME via targeted depletion of M2-like TAMs for cancer immunotherapy. Through the M2pep peptide, M-H@lip-ZA can be efficiently delivered to M2-like TAMs. In the meantime, reactive oxygen species (ROS) resulting from sonodynamic therapy (SDT), together with inner ZA that shows high affinity and cytotoxicity to TAMs, can effectively deplete M2-like TAMs and remodel TME (normalize tumor vasculatures, strengthen intertumoral perfusion, ease tumor hypoxia, increase immune-promoting cytokines and decrease immunosuppressive cytokines). The tumor growth can be effectively inhibited. This work proposed a new paradigm for cancer immunotherapy via targeted depletion of M2-like TAMs. STATEMENT OF SIGNIFICANCE: • M2-like TAMs-targeted nanoliposome (M-H@lip-ZA) was designed and prepared. • Sonodynamic therapy (SDT), together with zoledronic acid (ZA) that shows high affinity and cytotoxicity to tumor-associated macrophages (TAMs), can effectively deplete M2-like TAMs. Subsequently, immune-promoting tumor microenvironment (TME) can be formed, which includes normalized tumor vasculatures, enhanced intertumoral perfusion, relieved tumor hypoxia, increased immune-promoting cytokines, and decreased immunosuppressive cytokines. • The targeted depletion of M2-like TAMs is a promising cancer immunotherapy approach.


Asunto(s)
Neoplasias , Macrófagos Asociados a Tumores , Humanos , Ácido Zoledrónico/farmacología , Macrófagos , Linfocitos T CD8-positivos , Microambiente Tumoral , Neoplasias/patología , Citocinas/farmacología , Péptidos/farmacología , Inmunoterapia/métodos
7.
Exp Neurol ; 354: 114103, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35525307

RESUMEN

Depression, a common and important cause of morbidity and mortality worldwide, is commonly treated with antidepressants, electric shock and psychotherapy. Recently, increasing evidence has shown that exercise can effectively alleviate depression. To determine the difference in efficacy between exercise and the classic antidepressant fluoxetine in treating depression, we established four groups: the Control, chronic unpredictable stress (CUS/STD), running (CUS/RUN) and fluoxetine (CUS/FLX) groups. The sucrose preference test (SPT), the forced swimming test (FST), the tail suspension test (TST), immunohistochemistry, immunofluorescence and stereological analyses were used to clarify the difference in therapeutic efficacy and mechanism between exercise and fluoxetine in the treatment of depression. In the seventh week, the sucrose preference of the CUS/RUN group was significantly higher than that of the CUS/STD group, while the sucrose preference of the CUS/FLX group did not differ from that of the CUS/STD group until the eighth week. Exercise reduced the immobility time in the FST and TST, while fluoxetine only reduced immobility time in the TST. Hippocampal structure analysis showed that the CUS/STD group exhibited an increase in immature neurons and a decrease in mature neurons. Exercise reduced the number of immature neurons and increased the number of mature neurons, but no increase in the number of mature neurons was observed after fluoxetine treatment. In addition, both running and fluoxetine reversed the decrease in the number of MAP2+ dendrites in depressed mice. Exercise increased the number of spinophilin-positive (Sp+) dendritic spines in the hippocampal CA1, CA3, and dentate gyrus (DG) regions, whereas fluoxetine only increased the number of SP+ spines in the DG. In summary, exercise promoted newborn neuron maturation in the DG and regulated neuronal plasticity in three hippocampal subregions, which might explain why running exerts earlier and more comprehensive antidepressant effects than fluoxetine.


Asunto(s)
Fluoxetina , Enfermedades de Transmisión Sexual , Animales , Ratones , Ratas , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Depresión/etiología , Modelos Animales de Enfermedad , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Hipocampo , Plasticidad Neuronal , Neuronas , Ratas Sprague-Dawley , Enfermedades de Transmisión Sexual/tratamiento farmacológico , Estrés Psicológico/tratamiento farmacológico , Sacarosa/farmacología
8.
Mol Neurobiol ; 58(9): 4251-4267, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33970453

RESUMEN

Neuroinflammation can cause cognitive deficits, and preexisting neuroinflammation is observed frequently in the clinic after trauma, surgery, and infection. Patients with preexisting neuroinflammation often need further medical treatment under general anesthesia. However, the effects of postconditioning with general anesthetics on preexisting neuroinflammation have not been determined. In this study, adult rats were posttreated with sevoflurane or propofol after intracerebroventricular administration of lipopolysaccharide. The effects of sevoflurane or propofol postconditioning on neuroinflammation-induced recognition memory deficits were detected. Our results found that postconditioning with sevoflurane but not propofol reversed the selective spatial recognition memory impairment induced by neuroinflammation, and these differential effects did not appear to be associated with the similar anti-neuroinflammatory responses of general anesthetics. However, postconditioning with propofol induced a selective long-lasting upregulation of extrasynaptic NR2B-containing N-methyl-D-aspartate receptors in the dorsal hippocampus, which downregulated the cAMP response element-binding signaling pathway and impaired spatial recognition memory. Additionally, the NR2B antagonists memantine and Ro25-6981 reversed this neurotoxicity induced by propofol postconditioning. Taken together, these results indicate that under preexisting neuroinflammation, postconditioning with sevoflurane can provide reliable neuroprotection by attenuating lipopolysaccharide-induced neuroinflammation, apoptosis, and neuronal loss and eventually improving spatial recognition deficits. However, although posttreatment with propofol also has the same anti-neuroinflammatory effects, the neurotoxicity caused by propofol postconditioning following neuroinflammation warrants further consideration.


Asunto(s)
Cognición/efectos de los fármacos , Hipocampo/efectos de los fármacos , Enfermedades Neuroinflamatorias/metabolismo , Propofol/administración & dosificación , Receptores de N-Metil-D-Aspartato/metabolismo , Sevoflurano/administración & dosificación , Animales , Hipocampo/metabolismo , Lipopolisacáridos , Masculino , Ratas , Ratas Sprague-Dawley , Reconocimiento en Psicología/efectos de los fármacos
9.
Mol Immunol ; 140: 87-96, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34673375

RESUMEN

Interferon stimulated gene 15 (ISG15) is one of the most robustly upregulated interferon stimulated genes (ISGs) and also a ubiquitin-like modifier which has been reported to play an important role in host defense against pathogens. Cytosolic nucleic acids detected by DNA sensors induce type Ⅰ interferons (IFN-Ⅰs) and ISGs in host cells. Streptococcus pneumoniae (S. pn) autolysin LytA triggers bacterial lysis and then S. pn-derived genomic DNA (hereafter referred to as S. pn-DNA) can be released and accumulates in the cytoplasm of host cells. However, it remains elusive whether LytA-mediated S. pn-DNA release is involved in ISG15 induction. Here we verified that ISG15 conjugation system can be widely activated by S. pn and cytosolic S. pn-DNA in host cells. Moreover, the phagocytosis of macrophages to the mutant strain S. pn D39 ΔlytA was enhanced when compared to S. pn D39, which in turn increased S. pn-DNA uptake into macrophages and augmented ISG15 expression. ISG15 might upregulate proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 1ß (IL-1ß) in macrophages and further promoted the clearance of S. pn in the absence of LytA. These results indicate that S. pn autolysis blunts ISG15 induction through preventing bacteria internalization and reducing cytosolic S. pn-DNA accumulation in macrophages, revealing a new strategy of S. pn for avoiding elimination. This study will help us to further understand the role of ISG15 during S. pn infection as well as the regulatory mechanisms of immune responses mediated by bacterial autolysis and bacterial DNA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citocinas/metabolismo , Citoplasma/microbiología , ADN Bacteriano/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Streptococcus pneumoniae/metabolismo , Animales , Citosol/metabolismo , Interacciones Huésped-Patógeno , Interferón beta/farmacología , Ratones , Modelos Biológicos , Mutación/genética , Fagocitosis , Células RAW 264.7 , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
10.
Transl Psychiatry ; 11(1): 622, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880203

RESUMEN

Although selective serotonin reuptake inhibitor (SSRI) systems have been meaningfully linked to the clinical phenomena of mood disorders, 15-35% of patients do not respond to multiple SSRI interventions or even experience an exacerbation of their condition. As we previously showed, both running exercise and fluoxetine reversed depression-like behavior. However, whether exercise reverses depression-like behavior more quickly than fluoxetine treatment and whether this rapid effect is achieved via the promotion of oligodendrocyte differentiation and/or myelination in the hippocampus was previously unknown. Sixty male C57BL/6 J mice were used in the present study. We subjected mice with unpredictable chronic stress (UCS) to a 4-week running exercise trial (UCS + RN) or intraperitoneally injected them with fluoxetine (UCS + FLX) to address these uncertainties. At the behavioral level, mice in the UCS + RN group consumed significantly more sugar water in the sucrose preference test (SPT) at the end of the 7th week than those in the UCS group, while those in the UCS + FLX group consumed significantly more sugar water than mice in the UCS group at the end of the 8th week. The unbiased stereological results and immunofluorescence analyses revealed that running exercise, and not fluoxetine treatment, increased the numbers of CC1+ and CC1+/Olig2+/BrdU+ oligodendrocytes in the CA1 subfield in depressed mice exposed to UCS. Moreover, running exercise rather than fluoxetine increased the level of myelin basic protein (MBP) and the G-ratio of myelinated nerve fibers in the CA1 subfield in the UCS mouse model. Unlike fluoxetine, exercise promoted hippocampal myelination and oligodendrocyte differentiation and thus has potential as a therapeutic strategy to reduce depression-like behaviors induced by UCS.


Asunto(s)
Depresión , Fluoxetina , Animales , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Fluoxetina/farmacología , Hipocampo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Oligodendroglía , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Estrés Psicológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA