Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 147: 109423, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341117

RESUMEN

Cystatins comprise a vast superfamily of evolutionary conserved proteins, predominantly recognized for their roles as endogenous inhibitors by regulating the activity of cysteine proteases. Emerging lines of research evidence also provides insight into their alternative roles in a spectrum of biological and pathological processes, including neurodegenerative disorders, tumor progression, inflammatory diseases, and immune response. Nowadays, various type-1 cystatins (stefins) have been demonstrated among a variety of discovered vertebrate groups, while little is known about the related homologue in cephalochordate amphioxus, which are repositioned at the base of the chordate phylum. In the present study, a single type-1 cystatin homologue in Branchiostoma japonicum was first successfully cloned and designated as Bjcystatin-1. The deduced Bjcystatin-1 protein is structurally characterized by the presence of typical wedge-shaped cystatin features, including the 'QxVxG' and 'Px' motif, as well as the conserved N-terminal glycine residue. Phylogenomic analyses utilizing different cystatin counterparts affirmed the close evolutionary relationship of Bjcystatin-1 and type-1 cystatin homologue. Bjcystatin-1 was predominantly expressed in the gills and hind-gut in a tissue-specific pattern, and its expression was remarkably up-regulated in response to challenge with bacteria or their signature molecules LPS and LTA, suggesting the involvement in immune response. Additionally, the recombinant Bjcystatin-1 (rBjcystatin-1) protein showed significant inhibitory activity towards papain and binding ability to LPS and LTA, indicating its hypothesized role as a pattern recognition receptor in immune response. Subcellular localization results also showed that Bjcystatin-1 was located in the cytoplasm and nucleus, and its overexpression could attenuate the activation of LPS-induced nuclear transcription factors NF-κB. Taken together, our study suggests that amphioxus Bjcystatin-1 acts as a dual role in protease inhibitor and an immunocompetent factor, providing new insights into the immune defense effect of type-1 cystatin in amphioxus.


Asunto(s)
Cistatinas , Anfioxos , Animales , Lipopolisacáridos , Cistatinas/genética , Evolución Biológica , Factores de Transcripción
2.
Int J Biol Macromol ; : 134429, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39097064

RESUMEN

Cystatins are well known as a vast superfamily of functional proteins participated in the reversible competitive inhibition of cysteine proteases. Currently, increasing evidences point to the extensive phylogenetic diversity and crucial immune roles of type-2 cystatins in the vertebrate species. However, no information is available regarding the homologue in cephalochordate amphioxus, the representative of most basal living chordates, whose immune regulation are still ambiguous. Here, we clearly identified the presence of type-2 cystatin gene in amphioxus Branchiostoma japonicum, termed Bjcystatin-2, which was structurally characterized by typical wedge-shaped cystatin feature. Evolutionary analyses revealed that Bjcystatin-2 is the ancestral type-2 cystatin for chordates, with gene diversity emerging through duplication events. The expression of Bjcystatin-2 showed tissue-specific profile and was inducible upon invasive pathogens. Significantly, the recombinant Bjcystatin-2 exhibited not merely cathepsin L inhibitory activity, but also the ability to bind with bacteria and their characteristic molecules. Furthermore, Bjcystatin-2 also showed the capacity to enhance the macrophage-driven bacterial phagocytosis and to attenuate the generation of pro-inflammatory cytokines within macrophages. In summary, these findings demonstrate that Bjcystatin-2 exhibits dual role acting as both a protease inhibitor and an immunoactive molecule, greatly enriching our understanding of immune defense mechanisms of type-2 cystatin within the amphioxus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA