Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 26(7): 2805-2819, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33067580

RESUMEN

It is essential to elucidate brain-adipocyte interactions in order to tackle obesity and its comorbidities, as the precise control of brain-adipose tissue cross-talk is crucial for energy and glucose homeostasis. Recent studies show that in the peripheral adipose tissue, adenosine induces adipogenesis through peripheral adenosine A1 receptor (pADORA1) signaling; however, it remains unclear whether systemic and adipose tissue metabolism would also be under the control of central (c) ADORA1 signaling. Here, we use tissue-specific pharmacology and metabolic tools to clarify the roles of cADORA1 signaling in energy and adipocyte physiology. We found that cADORA1 signaling reduces body weight while also inducing adipose tissue lipolysis. cADORA1 signaling also increases adipose tissue sympathetic norepinephrine content. In contrast, pADORA1 signaling facilitates a high-fat diet-induced obesity (DIO). We propose here a novel mechanism in which cADORA1 and pADORA1 signaling hinder and aggravate DIO, respectively.


Asunto(s)
Tejido Adiposo , Metabolismo de los Lípidos , Adipocitos , Tejido Adiposo/metabolismo , Peso Corporal , Encéfalo , Dieta Alta en Grasa , Metabolismo Energético , Humanos
2.
Proc Natl Acad Sci U S A ; 114(22): E4472-E4481, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28507131

RESUMEN

Age-related macular degeneration (AMD) is the major cause of blindness in developed nations. AMD is characterized by retinal pigmented epithelial (RPE) cell dysfunction and loss of photoreceptor cells. Epidemiologic studies indicate important contributions of dietary patterns to the risk for AMD, but the mechanisms relating diet to disease remain unclear. Here we investigate the effect on AMD of isocaloric diets that differ only in the type of dietary carbohydrate in a wild-type aged-mouse model. The consumption of a high-glycemia (HG) diet resulted in many AMD features (AMDf), including RPE hypopigmentation and atrophy, lipofuscin accumulation, and photoreceptor degeneration, whereas consumption of the lower-glycemia (LG) diet did not. Critically, switching from the HG to the LG diet late in life arrested or reversed AMDf. LG diets limited the accumulation of advanced glycation end products, long-chain polyunsaturated lipids, and their peroxidation end-products and increased C3-carnitine in retina, plasma, or urine. Untargeted metabolomics revealed microbial cometabolites, particularly serotonin, as protective against AMDf. Gut microbiota were responsive to diet, and we identified microbiota in the Clostridiales order as being associated with AMDf and the HG diet, whereas protection from AMDf was associated with the Bacteroidales order and the LG diet. Network analysis revealed a nexus of metabolites and microbiota that appear to act within a gut-retina axis to protect against diet- and age-induced AMDf. The findings indicate a functional interaction between dietary carbohydrates, the metabolome, including microbial cometabolites, and AMDf. Our studies suggest a simple dietary intervention that may be useful in patients to arrest AMD.


Asunto(s)
Glucemia/metabolismo , Microbioma Gastrointestinal/fisiología , Índice Glucémico/fisiología , Degeneración Macular/metabolismo , Retina/metabolismo , Animales , Productos Finales de Glicación Avanzada/metabolismo , Metaboloma/fisiología , Metabolómica , Ratones
3.
J Neurosci ; 32(40): 13701-8, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23035082

RESUMEN

Glucagon-like peptide-1 (GLP-1) is an endogenous intestinal peptide that enhances glucose-stimulated insulin secretion. Its natural cleavage product GLP-1(9-36)(amide) possesses distinct properties and does not affect insulin secretion. Here we report that pretreatment of hippocampal slices with GLP-1(9-36)(amide) prevented impaired long-term potentiation (LTP) and enhanced long-term depression induced by exogenous amyloid ß peptide Aß((1-42)). Similarly, hippocampal LTP impairments in amyloid precursor protein/presenilin 1 (APP/PS1) mutant mice that model Alzheimer's disease (AD) were prevented by GLP-1(9-36)(amide). In addition, treatment of APP/PS1 mice with GLP-1(9-36)(amide) at an age at which they display impaired spatial and contextual fear memory resulted in a reversal of their memory defects. At the molecular level, GLP-1(9-36)(amide) reduced elevated levels of mitochondrial-derived reactive oxygen species and restored dysregulated Akt-glycogen synthase kinase-3ß signaling in the hippocampus of APP/PS1 mice. Our findings suggest that GLP-1(9-36)(amide) treatment may have therapeutic potential for AD and other diseases associated with cognitive dysfunction.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/uso terapéutico , Péptido 1 Similar al Glucagón/análogos & derivados , Trastornos de la Memoria/tratamiento farmacológico , Plasticidad Neuronal/efectos de los fármacos , Nootrópicos/uso terapéutico , Péptidos/uso terapéutico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/farmacología , Animales , Antioxidantes/farmacología , Aprendizaje por Asociación/efectos de los fármacos , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Miedo , Femenino , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/uso terapéutico , Glucógeno Sintasa Quinasa 3/fisiología , Glucógeno Sintasa Quinasa 3 beta , Masculino , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nootrópicos/farmacología , Compuestos Organofosforados/farmacología , Fragmentos de Péptidos/farmacología , Péptidos/farmacología , Presenilina-1/genética , Proteínas Proto-Oncogénicas c-akt/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Ubiquinona/análogos & derivados , Ubiquinona/farmacología
4.
Proc Natl Acad Sci U S A ; 106(32): 13505-10, 2009 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-19666581

RESUMEN

Diabetes is associated with poor outcomes following acute vascular occlusive events. This results in part from a failure to form adequate compensatory microvasculature in response to ischemia. Since vascular endothelial growth factor (VEGF) is an essential mediator of neovascularization, we examined whether hypoxic up-regulation of VEGF was impaired in diabetes. Both fibroblasts isolated from type 2 diabetic patients, and normal fibroblasts exposed chronically to high glucose, were defective in their capacity to up-regulate VEGF in response to hypoxia. In vivo, diabetic animals demonstrated an impaired ability to increase VEGF production in response to soft tissue ischemia. This resulted from a high glucose-induced decrease in transactivation by the transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha), which mediates hypoxia-stimulated VEGF expression. Decreased HIF-1alpha functional activity was specifically caused by impaired HIF-1alpha binding to the coactivator p300. We identify covalent modification of p300 by the dicarbonyl metabolite methylglyoxal as being responsible for this decreased association. Administration of deferoxamine abrogated methylglyoxal conjugation, normalizing both HIF-1alpha/p300 interaction and transactivation by HIF-1alpha. In diabetic mice, deferoxamine promoted neovascularization and enhanced wound healing. These findings define molecular defects that underlie impaired VEGF production in diabetic tissues and offer a promising direction for therapeutic intervention.


Asunto(s)
Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/patología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Hipoxia/complicaciones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Cultivadas , Deferoxamina/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Modelos Animales de Enfermedad , Glucosa/farmacología , Humanos , Hiperglucemia/complicaciones , Hiperglucemia/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Neovascularización Patológica/complicaciones , Neovascularización Patológica/patología , Unión Proteica/efectos de los fármacos , Piruvaldehído/farmacología , Especies Reactivas de Oxígeno/metabolismo , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Factores de Transcripción p300-CBP/metabolismo
5.
Nat Med ; 9(3): 294-9, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12592403

RESUMEN

Three of the major biochemical pathways implicated in the pathogenesis of hyperglycemia induced vascular damage (the hexosamine pathway, the advanced glycation end product (AGE) formation pathway and the diacylglycerol (DAG)-protein kinase C (PKC) pathway) are activated by increased availability of the glycolytic metabolites glyceraldehyde-3-phosphate and fructose-6-phosphate. We have discovered that the lipid-soluble thiamine derivative benfotiamine can inhibit these three pathways, as well as hyperglycemia-associated NF-kappaB activation, by activating the pentose phosphate pathway enzyme transketolase, which converts glyceraldehyde-3-phosphate and fructose-6-phosphate into pentose-5-phosphates and other sugars. In retinas of diabetic animals, benfotiamine treatment inhibited these three pathways and NF-kappaB activation by activating transketolase, and also prevented experimental diabetic retinopathy. The ability of benfotiamine to inhibit three major pathways simultaneously might be clinically useful in preventing the development and progression of diabetic complications.


Asunto(s)
Retinopatía Diabética/prevención & control , Hiperglucemia/fisiopatología , Tiamina/análogos & derivados , Tiamina/uso terapéutico , Transcetolasa/metabolismo , Animales , Bovinos , Células Cultivadas , Diabetes Mellitus Experimental , Retinopatía Diabética/etiología , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Activación Enzimática , Glucosa/farmacología , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Hiperglucemia/complicaciones , Masculino , FN-kappa B/metabolismo , Proteína Quinasa C/metabolismo , Distribución Aleatoria , Ratas , Ratas Wistar , Retina/metabolismo , Retina/patología , Tiamina/farmacología , Uridina Difosfato N-Acetilglucosamina/metabolismo
6.
Aging Cell ; 19(11): e13257, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33146912

RESUMEN

Diabetes and metabolic syndrome are associated with the typical American high glycemia diet and result in accumulation of high levels of advanced glycation end products (AGEs), particularly upon aging. AGEs form when sugars or their metabolites react with proteins. Associated with a myriad of age-related diseases, AGEs accumulate in many tissues and are cytotoxic. To date, efforts to limit glycation pharmacologically have failed in human trials. Thus, it is crucial to identify systems that remove AGEs, but such research is scanty. Here, we determined if and how AGEs might be cleared by autophagy. Our in vivo mouse and C. elegans models, in which we altered proteolysis or glycative burden, as well as experiments in five types of cells, revealed more than six criteria indicating that p62-dependent autophagy is a conserved pathway that plays a critical role in the removal of AGEs. Activation of autophagic removal of AGEs requires p62, and blocking this pathway results in accumulation of AGEs and compromised viability. Deficiency of p62 accelerates accumulation of AGEs in soluble and insoluble fractions. p62 itself is subject to glycative inactivation and accumulates as high mass species. Accumulation of p62 in retinal pigment epithelium is reversed by switching to a lower glycemia diet. Since diminution of glycative damage is associated with reduced risk for age-related diseases, including age-related macular degeneration, cardiovascular disease, diabetes, Alzheimer's, and Parkinson's, discovery of methods to limit AGEs or enhance p62-dependent autophagy offers novel potential therapeutic targets to treat AGEs-related pathologies.


Asunto(s)
Productos Finales de Glicación Avanzada/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Autofagia/fisiología , Línea Celular , Supervivencia Celular/fisiología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Riñón/citología , Riñón/metabolismo , Cristalino/citología , Cristalino/metabolismo , Lisosomas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas
7.
J Clin Invest ; 116(4): 1071-80, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16528409

RESUMEN

Insulin resistance markedly increases cardiovascular disease risk in people with normal glucose tolerance, even after adjustment for known risk factors such as LDL, triglycerides, HDL, and systolic blood pressure. In this report, we show that increased oxidation of FFAs in aortic endothelial cells without added insulin causes increased production of superoxide by the mitochondrial electron transport chain. FFA-induced overproduction of superoxide activated a variety of proinflammatory signals previously implicated in hyperglycemia-induced vascular damage and inactivated 2 important antiatherogenic enzymes, prostacyclin synthase and eNOS. In 2 nondiabetic rodent models--insulin-resistant, obese Zucker (fa/fa) rats and high-fat diet-induced insulin-resistant mice--inactivation of prostacyclin synthase and eNOS was prevented by inhibition of FFA release from adipose tissue; by inhibition of the rate-limiting enzyme for fatty acid oxidation in mitochondria, carnitine palmitoyltransferase I; and by reduction of superoxide levels. These studies identify what we believe to be a novel mechanism contributing to the accelerated atherogenesis and increased cardiovascular disease risk occurring in people with insulin resistance.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Resistencia a la Insulina/fisiología , Oxidorreductasas Intramoleculares/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Animales , Aorta , Carnitina O-Palmitoiltransferasa/metabolismo , Proteínas Portadoras/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Endotelio Vascular/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Canales Iónicos , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales , Modelos Biológicos , Oxidación-Reducción , Ratas , Ratas Zucker , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Proteína Desacopladora 1
8.
Transl Psychiatry ; 9(1): 111, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850579

RESUMEN

Recent studies indicate that activation of hypothalamic Agouti-related protein (Agrp) neurons can increase forage-related/repetitive behavior and decrease anxiety levels. However, the impact of physiological hunger states and food deprivation on anxiety-related behaviors have not been clarified. In the present study, we evaluated changes in anxiety levels induced by physiological hunger states and food deprivation, and identified the neuron population involved. Ad libitum fed and fasted mice were tested in the open field and elevated plus-maze behavioral tests. The DREADD approach was applied to selectively inhibit and stimulate neurons expressing Agrp in hypothalamic arcuate nucleus in Agrp-Cre transgenic mice. We found that anxiety levels were significantly reduced in the late light period when mice have increased need for food and increased Agrp neurons firing, in contrast to the levels in the early light period. Consistently, we also found that anxiety was potently reduced in 24-h fasted mice, relative to 12-h fasted mice or fed ad libitum. Mechanistically, we found that chemogenetic activation of Agrp neurons reduced anxiety in fed mice, and inactivation of Agrp neurons reduced fasting-induced anxiolytic effects. Our results suggest that anxiety levels may vary physiologically with the increasing need for food, and are influenced by acute fasting in a time-dependent manner. Agrp neurons contribute to fasting-induced anxiolytic effects, supporting the notion that Agrp neuron may serve as an entry point for the treatment of energy states-related anxiety disorders.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Ansiedad , Ritmo Circadiano , Ayuno/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/fisiología , Ingestión de Alimentos/fisiología , Femenino , Privación de Alimentos , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal
9.
J Clin Invest ; 112(7): 1049-57, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14523042

RESUMEN

In this report, we show that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron transport chain activates the three major pathways of hyperglycemic damage found in aortic endothelial cells by inhibiting GAPDH activity. In bovine aortic endothelial cells, GAPDH antisense oligonucleotides activated each of the pathways of hyperglycemic vascular damage in cells cultured in 5 mM glucose to the same extent as that induced by culturing cells in 30 mM glucose. Hyperglycemia-induced GAPDH inhibition was found to be a consequence of poly(ADP-ribosyl)ation of GAPDH by poly(ADP-ribose) polymerase (PARP), which was activated by DNA strand breaks produced by mitochondrial superoxide overproduction. Both the hyperglycemia-induced decrease in activity of GAPDH and its poly(ADP-ribosyl)ation were prevented by overexpression of either uncoupling protein-1 (UCP-1) or manganese superoxide dismutase (MnSOD), which decrease hyperglycemia-induced superoxide. Overexpression of UCP-1 or MnSOD also prevented hyperglycemia-induced DNA strand breaks and activation of PARP. Hyperglycemia-induced activation of each of the pathways of vascular damage was abolished by blocking PARP activity with the competitive PARP inhibitors PJ34 or INO-1001. Elevated glucose increased poly(ADP-ribosyl)ation of GAPDH in WT aortae, but not in the aortae from PARP-1-deficient mice. Thus, inhibition of PARP blocks hyperglycemia-induced activation of multiple pathways of vascular damage.


Asunto(s)
Endotelio Vascular/patología , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Hiperglucemia/patología , Poli(ADP-Ribosa) Polimerasas/fisiología , Animales , Bovinos , Células Cultivadas , Daño del ADN , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/prevención & control , Endotelio Vascular/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Hexosaminas/metabolismo , Mitocondrias/metabolismo , FN-kappa B/fisiología , Oligonucleótidos Antisentido/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteína Quinasa C/fisiología , Superóxidos/metabolismo
10.
Sci Rep ; 7(1): 15823, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29158477

RESUMEN

Sirolimus (rapamycin) is an immunosuppressive drug used in transplantation. One of its major side effects is the increased risk of diabetes mellitus; however, the exact mechanisms underlying such association have not been elucidated. Here we show that sirolimus impairs glucose-stimulated insulin secretion both in human and murine pancreatic islets and in clonal ß cells in a dose- and time-dependent manner. Importantly, we demonstrate that sirolimus markedly depletes calcium (Ca2+) content in the endoplasmic reticulum and significantly decreases glucose-stimulated mitochondrial Ca2+ uptake. Crucially, the reduced mitochondrial Ca2+ uptake is mirrored by a significant impairment in mitochondrial respiration. Taken together, our findings indicate that sirolimus causes depletion of intracellular Ca2+ stores and alters mitochondrial fitness, eventually leading to decreased insulin release. Our results provide a novel molecular mechanism underlying the increased incidence of diabetes mellitus in patients treated with this drug.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Glucosa/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Sirolimus/farmacología , Animales , Calcio/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/genética , Humanos , Insulina/genética , Insulina/metabolismo , Secreción de Insulina/genética , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/patología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Sirolimus/efectos adversos
11.
Exp Ther Med ; 10(4): 1364-1374, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26622492

RESUMEN

Marjolin's ulcers, which are epidermoid carcinomas arising on non-healing scar tissue, may be of various pathological types, including squamous cell carcinoma. The pathogenesis of squamous cell carcinoma arising in an ulcer differs from that of the primary cutaneous squamous cell carcinoma. This squamous cell carcinoma is aggressive in nature, and has a high rate of metastasis. Between January 2001 and September 2013, 51 patients with Marjolin's ulcers were admitted to the Departments of Plastic Surgery of the Affiliated Foshan Hospital and the Second Affiliated Hospital of Sun Yat-sen University. The ulcers included 43 cases of squamous cell carcinoma, six of melanoma, one of basal cell carcinoma and one of epithelioid sarcoma. The clinical data of these patients were retrospectively analyzed. Patients were followed until mortality. Among the patients with squamous cell carcinoma, 30.23% exhibited sentinel lymph node metastasis and 11.63% had distant metastasis. Among the patients with melanoma, 66.67% had sentinel lymph node metastasis and 33.33% had distant metastasis. Sentinel lymph node metastasis was successfully detected in 11 patients with Marjolin's ulcer using 18F-fluorodeoxyglucose positron emission tomography-computed tomography and B-mode ultrasound guided biopsy. Squamous cell carcinoma was often treated by extended resection and skin grafting or skin flap repair. Patients with deep, aggressive squamous cell carcinoma of an extremity and sentinel lymph node metastasis underwent amputation and lymph node dissection. This treatment was also used for melanoma type Marjolin's ulcers.

12.
Atherosclerosis ; 239(2): 393-400, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25682038

RESUMEN

OBJECTIVE: The pathogenic events responsible for accelerated atherosclerosis in patients with chronic renal failure (CRF) are poorly understood. Here we investigate the hypothesis that concentrations of urea associated with CRF and increased ROS production in adipocytes might also increase ROS production directly in arterial endothelial cells, causing the same pathophysiologic changes seen with hyperglycemia. METHODS: Primary cultures of human aortic endothelial cells (HAEC) were exposed to 20mM urea for 48 h. C57BL/6J wild-type mice underwent 5/6 nephrectomy or a sham operation. Randomized groups of 5/6 nephrectomized mice and their controls were also injected i.p. with a SOD/catalase mimetic (MnTBAP) for 15 days starting immediately after the final surgical procedure. RESULTS: Urea at concentrations seen in CRF induced mitochondrial ROS production in cultured HAEC. Urea-induced ROS caused the activation of endothelial pro-inflammatory pathways through the inhibition of GAPDH, including increased protein kinase C isoforms activity, increased hexosamine pathway activity, and accumulation of intracellular AGEs (advanced glycation end products). Urea-induced ROS directly inactivated the anti-atherosclerosis enzyme PGI2 synthase and also caused ER stress. Normalization of mitochondrial ROS production prevented each of these effects of urea. In uremic mice, treatment with MnTBAP prevented aortic oxidative stress, PGI2 synthase activity reduction and increased expression of the pro-inflammatory proteins TNFα, IL-6, VCAM1, Endoglin, and MCP-1. CONCLUSIONS: Taken together, these data show that urea itself, at levels common in patients with CRF, causes endothelial dysfunction and activation of proatherogenic pathways.


Asunto(s)
Endotelio Vascular/patología , Fallo Renal Crónico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Urea/química , Animales , Antígenos CD/metabolismo , Aorta/metabolismo , Aterosclerosis/enzimología , Aterosclerosis/metabolismo , Aterosclerosis/fisiopatología , Catalasa/metabolismo , Quimiocina CCL2/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Endoglina , Células Endoteliales/metabolismo , Endotelio/enzimología , Endotelio Vascular/efectos de los fármacos , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Humanos , Interleucina-6/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Fallo Renal Crónico/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Distribución Aleatoria , Receptores de Superficie Celular/metabolismo , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
13.
Diabetes ; 64(9): 3273-84, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26294429

RESUMEN

The assumption underlying current diabetes treatment is that lowering the level of time-averaged glucose concentrations, measured as HbA1c, prevents microvascular complications. However, 89% of variation in risk of retinopathy, microalbuminuria, or albuminuria is due to elements of glycemia not captured by mean HbA1c values. We show that transient exposure to high glucose activates a multicomponent feedback loop that causes a stable left shift of the glucose concentration-reactive oxygen species (ROS) dose-response curve. Feedback loop disruption by the GLP-1 cleavage product GLP-1(9-36)(amide) reverses the persistent left shift, thereby normalizing persistent overproduction of ROS and its pathophysiologic consequences. These data suggest that hyperglycemic spikes high enough to activate persistent ROS production during subsequent periods of normal glycemia but too brief to affect the HbA1c value are a major determinant of the 89% of diabetes complications risk not captured by HbA1c. The phenomenon and mechanism described in this study provide a basis for the development of both new biomarkers to complement HbA1c and novel therapeutic agents, including GLP-1(9-36)(amide), for the prevention and treatment of diabetes complications.


Asunto(s)
Complicaciones de la Diabetes/metabolismo , Retroalimentación Fisiológica , Péptido 1 Similar al Glucagón/análogos & derivados , Glucosa/metabolismo , Hiperglucemia/metabolismo , Mitocondrias/metabolismo , Péptidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Células Endoteliales/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Hemoglobina Glucada/metabolismo , Humanos , Hierro/metabolismo , Potencial de la Membrana Mitocondrial
14.
Diabetes ; 63(1): 291-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24062246

RESUMEN

Differences in susceptibility to diabetic nephropathy (DN) between mouse strains with identical levels of hyperglycemia correlate with renal levels of oxidative stress, shown previously to play a central role in the pathogenesis of DN. Susceptibility to DN appears to be genetically determined, but the critical genes have not yet been identified. Overexpression of the enzyme glyoxalase 1 (Glo1), which prevents posttranslational modification of proteins by the glycolysis-derived α-oxoaldehyde, methylglyoxal (MG), prevents hyperglycemia-induced oxidative stress in cultured cells and model organisms. In this study, we show that in nondiabetic mice, knockdown of Glo1 increases to diabetic levels both MG modification of glomerular proteins and oxidative stress, causing alterations in kidney morphology indistinguishable from those caused by diabetes. We also show that in diabetic mice, Glo1 overexpression completely prevents diabetes-induced increases in MG modification of glomerular proteins, increased oxidative stress, and the development of diabetic kidney pathology, despite unchanged levels of diabetic hyperglycemia. Together, these data indicate that Glo1 activity regulates the sensitivity of the kidney to hyperglycemic-induced renal pathology and that alterations in the rate of MG detoxification are sufficient to determine the glycemic set point at which DN occurs.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Hiperglucemia/metabolismo , Riñón/metabolismo , Lactoilglutatión Liasa/metabolismo , Albuminuria/genética , Albuminuria/metabolismo , Albuminuria/fisiopatología , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/fisiopatología , Hiperglucemia/genética , Hiperglucemia/fisiopatología , Riñón/fisiopatología , Lactoilglutatión Liasa/genética , Ratones , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo
15.
Physiol Rep ; 2(6)2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24920125

RESUMEN

The reactive dicarbonyls, glyoxal and methylglyoxal (MG), increase in diabetes and may participate in the development of diabetic complications. Glyoxal and MG are detoxified by the sequential activities of glyoxalase 1 (GLO1) and glyoxalase 2. To determine the contribution of these dicarbonyls to the etiology of complications, we have genetically manipulated GLO1 levels in apolipoprotein E-null (Apoe(-/-)) mice. Male Apoe(-/-) mice, hemizygous for a human GLO1 transgene (GLO1TGApoe(-/-) mice) or male nontransgenic Apoe(-/-) litter mates were injected with streptozotocin or vehicle and 6 or 20 weeks later, aortic atherosclerosis was quantified. The GLO1 transgene lessened streptozotocin (STZ)-induced increases in immunoreactive hydroimidazolone (MG-H1). Compared to nondiabetic mice, STZ-treated GLO1TGApoe(-/-) and Apoe(-/-) mice had increased serum cholesterol and triglycerides and increased atherosclerosis at both times after diabetes induction. While the increased GLO1 activity in the GLO1TGApoe(-/-) mice failed to protect against diabetic atherosclerosis, it lessened glomerular mesangial expansion, prevented albuminuria and lowered renal levels of dicarbonyls and protein glycation adducts. Aortic atherosclerosis was also quantified in 22-week-old, male normoglycemic Glo1 knockdown mice on an Apoe(-/-) background (Glo1KDApoe(-/-) mice), an age at which Glo1KD mice exhibit albuminuria and renal pathology similar to that of diabetic mice. In spite of ~75% decrease in GLO1 activity and increased aortic MG-H1, the Glo1KDApoe(-/-) mice did not show increased atherosclerosis compared to age-matched Apoe(-/-) mice. Thus, manipulation of GLO1 activity does not affect the development of early aortic atherosclerosis in Apoe(-/-) mice but can dictate the onset of kidney disease independently of blood glucose levels.

16.
Braz J Med Biol Res ; 45(7): 656-64, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22527125

RESUMEN

The objective was to elucidate the relationships between serum concentrations of the gut hormone peptide YY (PYY) and ghrelin and growth development in infants for potential application to the clinical observation index. Serum concentrations of PYY and ghrelin were measured using radioimmunoassay from samples collected at the clinic. For each patient, gestational age, birth weight, time required to return to birth weight, rate of weight gain, time required to achieve recommended daily intake (RDI) standards, time required for full-gastric feeding, duration of hospitalization, and time of administration of total parenteral nutrition were recorded. Serum PYY and ghrelin concentrations were significantly higher in the preterm group (N = 20) than in the full-term group (N = 20; P < 0.01). Within the preterm infant group, the serum concentrations of PYY and ghrelin on postnatal day (PND) 7 (ghrelin = 1485.38 ± 409.24; PYY = 812.37 ± 153.77 ng/L) were significantly higher than on PND 1 (ghrelin = 956.85 ± 223.09; PYY = 545.27 ± 204.51 ng/L) or PND 3 (ghrelin = 1108.44 ± 351.36; PYY = 628.96 ± 235.63 ng/L; P < 0.01). Both serum PYY and ghrelin concentrations were negatively correlated with body weight, and the degree of correlation varied with age. Serum ghrelin concentration correlated negatively with birth weight and positively with the time required to achieve RDI (P < 0.05). In conclusion, serum PYY and ghrelin concentrations reflect a negative energy balance, predict postnatal growth, and enable compensation. Further studies are required to elucidate the precise concentration and roles of PYY and ghrelin in newborns and to determine the usefulness of measuring these hormones in clinical practice.


Asunto(s)
Peso Corporal/fisiología , Ingestión de Energía/fisiología , Ghrelina/sangre , Recien Nacido Prematuro/fisiología , Necesidades Nutricionales/fisiología , Péptido YY/sangre , Aumento de Peso/fisiología , Estudios de Casos y Controles , Femenino , Humanos , Recién Nacido , Masculino , Radioinmunoensayo
17.
J Clin Invest ; 120(1): 203-13, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19955654

RESUMEN

Although supraphysiological concentrations of urea are known to increase oxidative stress in cultured cells, it is generally thought that the elevated levels of urea in chronic renal failure patients have negligible toxicity. We previously demonstrated that ROS increase intracellular protein modification by O-linked beta-N-acetylglucosamine (O-GlcNAc), and others showed that increased modification of insulin signaling molecules by O-GlcNAc reduces insulin signal transduction. Because both oxidative stress and insulin resistance have been observed in patients with end-stage renal disease, we sought to determine the role of urea in these phenotypes. Treatment of 3T3-L1 adipocytes with urea at disease-relevant concentrations induced ROS production, caused insulin resistance, increased expression of adipokines retinol binding protein 4 (RBP4) and resistin, and increased O-GlcNAc-modified insulin signaling molecules. Investigation of a mouse model of surgically induced renal failure (uremic mice) revealed increased ROS production, modification of insulin signaling molecules by O-GlcNAc, and increased expression of RBP4 and resistin in visceral adipose tissue. Uremic mice also displayed insulin resistance and glucose intolerance, and treatment with an antioxidant SOD/catalase mimetic normalized these defects. The SOD/catalase mimetic treatment also prevented the development of insulin resistance in normal mice after urea infusion. These data suggest that therapeutic targeting of urea-induced ROS may help reduce the high morbidity and mortality caused by end-stage renal disease.


Asunto(s)
Resistencia a la Insulina , Fallo Renal Crónico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Urea/sangre , Células 3T3-L1 , Animales , Glucemia/análisis , Glucosa/metabolismo , Intolerancia a la Glucosa/etiología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Fosforilación , Resistina/sangre , Proteínas Plasmáticas de Unión al Retinol/análisis
18.
Aging Cell ; 9(3): 420-32, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20346071

RESUMEN

Deletions in mitochondrial DNA (mtDNA) accumulate during aging. Expression of the Caenorhabditis elegans apurinic/apyrimidinic endonuclease 1 (APE1) ortholog exo-3, involved in DNA repair, is reduced by 45% (P < 0.05) during aging of C. elegans. Suppression of exo-3 by treatment with RNAi resulted in a threefold increase in mtDNA deletions (P < 0.05), twofold enhanced generation of reactive oxygen species (ROS) (P < 0.01), distortion of the structural integrity of the nervous system, reduction of head motility by 43% (P < 0.01) and whole animal motility by 38% (P < 0.05). Suppression of exo-3 significantly reduced life span: mean life span decreased from 18.5 +/- 0.4 to 15.4 +/- 0.1 days (P < 0.001) and maximum life span from 25.9 +/- 0.4 to 23.2 +/- 0.1 days (P = 0.001). Additional treatment of exo-3-suppressed animals with a mitochondrial uncoupler decreased ROS levels, reduced neuronal damage, and increased motility and life span. Additional suppression of the C. elegans p53 ortholog cep-1 in exo-3 RNAi-treated animals similarly decreased ROS levels, preserved neuronal integrity, and increased motility and life span. In wild-type animals, suppression of cep-1, involved in downregulation of exo-3, increased expression of exo-3 without a significant effect on ROS levels, preserved neuronal integrity, and increased motility and life span. Suppression of the C. elegans thioredoxin orthologs trx-1 and trx-2, involved in the redox chaperone activity of exo-3, overrides the protective effect of cep-1 RNAi treatment on neuronal integrity, neuronal function, mean and maximum life span. These results show that APE1/EXO-3, p53/CEP-1, and thioredoxin affect each other and that these interactions determine aging as well as neuronal structure and function.


Asunto(s)
Envejecimiento , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Tiorredoxinas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , ADN Mitocondrial/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Eliminación de Gen , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/genética , Proteína p53 Supresora de Tumor/genética
19.
Diabetes ; 58(11): 2450-6, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19675139

RESUMEN

OBJECTIVE: Establishing Caenorhabditis elegans as a model for glucose toxicity-mediated life span reduction. RESEARCH DESIGN AND METHODS: C. elegans were maintained to achieve glucose concentrations resembling the hyperglycemic conditions in diabetic patients. The effects of high glucose on life span, glyoxalase-1 activity, advanced glycation end products (AGEs), and reactive oxygen species (ROS) formation and on mitochondrial function were studied. RESULTS: High glucose conditions reduced mean life span from 18.5 + or - 0.4 to 16.5 + or - 0.6 days and maximum life span from 25.9 + or - 0.4 to 23.2 + or - 0.4 days, independent of glucose effects on cuticle or bacterial metabolization of glucose. The formation of methylglyoxal-modified mitochondrial proteins and ROS was significantly increased by high glucose conditions and reduced by mitochondrial uncoupling and complex IIIQo inhibition. Overexpression of the methylglyoxal-detoxifying enzyme glyoxalase-1 attenuated the life-shortening effect of glucose by reducing AGE accumulation (by 65%) and ROS formation (by 50%) and restored mean (16.5 + or - 0.6 to 20.6 + or - 0.4 days) and maximum life span (23.2 + or - 0.4 to 27.7 + or - 2.3 days). In contrast, inhibition of glyoxalase-1 by RNAi further reduced mean (16.5 + or - 0.6 to 13.9 + or - 0.7 days) and maximum life span (23.2 + or - 0.4 to 20.3 + or - 1.1 days). The life span reduction by glyoxalase-1 inhibition was independent from the insulin signaling pathway because high glucose conditions also affected daf-2 knockdown animals in a similar manner. CONCLUSIONS: C. elegans is a suitable model organism to study glucose toxicity, in which high glucose conditions limit the life span by increasing ROS formation and AGE modification of mitochondrial proteins in a daf-2 independent manner. Most importantly, glucose toxicity can be prevented by improving glyoxalase-1-dependent methylglyoxal detoxification or preventing mitochondrial dysfunction.


Asunto(s)
Caenorhabditis elegans/metabolismo , Glucosa/toxicidad , Hiperglucemia/metabolismo , Longevidad/fisiología , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/ultraestructura , Modelos Animales de Enfermedad , Humanos , Esperanza de Vida/tendencias , Microscopía Electrónica de Rastreo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
20.
Aging Cell ; 7(2): 260-9, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18221415

RESUMEN

Studies of mutations affecting lifespan in Caenorhabditis elegans show that mitochondrial generation of reactive oxygen species (ROS) plays a major causative role in organismal aging. Here, we describe a novel mechanism for regulating mitochondrial ROS production and lifespan in C. elegans: progressive mitochondrial protein modification by the glycolysis-derived dicarbonyl metabolite methylglyoxal (MG). We demonstrate that the activity of glyoxalase-1, an enzyme detoxifying MG, is markedly reduced with age despite unchanged levels of glyoxalase-1 mRNA. The decrease in enzymatic activity promotes accumulation of MG-derived adducts and oxidative stress markers, which cause further inhibition of glyoxalase-1 expression. Over-expression of the C. elegans glyoxalase-1 orthologue CeGly decreases MG modifications of mitochondrial proteins and mitochondrial ROS production, and prolongs C. elegans lifespan. In contrast, knock-down of CeGly increases MG modifications of mitochondrial proteins and mitochondrial ROS production, and decreases C. elegans lifespan.


Asunto(s)
Caenorhabditis elegans/enzimología , Lactoilglutatión Liasa/biosíntesis , Lactoilglutatión Liasa/deficiencia , Longevidad , Mitocondrias/enzimología , Modificación Traduccional de las Proteínas , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Inhibidores Enzimáticos , Retroalimentación Fisiológica , Expresión Génica , Lactoilglutatión Liasa/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo , Mutación , Fosforilación Oxidativa , Estrés Oxidativo , Piruvaldehído/metabolismo , ARN de Helminto , ARN Mensajero/análisis , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA