Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255758

RESUMEN

The strawberry tree (Arbustus unedo) is a medicinal plant and an important source of biocompounds, potentially useful for pharmaceutical and chemical applications to prevent or treat several human diseases. The strawberry tree fruits have usually been used to produce traditional products such as jams and jellies and to obtain fermented alcoholic drinks, representing the most valuable derivative products. Other fermented products are potentially interesting for their nutritional value; however, the fermentation process needs to be controlled and standardized to obtain high-quality products/ingredients. In this work, we investigated two different fermentative procedures, using strawberry tree whole fruit and fruit paste as matrices inoculated with a selected starter strain of Saccharomyces cerevisiae LI 180-7. The physical, chemical, microbiological and nutritional properties of fermented products were evaluated, as well as their antioxidant activity. The new obtained fermented products are enriched in organic acids (acetic acid varied from 39.58 and 57.21 mg/g DW and lactic acid from 85.33 to 114.1 mg/g DW) and have better nutritional traits showing a higher amount of total polyphenols (phenolic acids, flavonoids and anthocyanins) that ranged from 1852 mg GAE/100 g DW to 2682 mg GAE/100 g DW. Also, the amount of isoprenoid increased ranging from 155.5 µg/g DW to 164.61 µg/g DW. In this regard, the most promising strategy seemed to be the fermentation of the fruit paste preparation; while the extract of fermented whole fruits showed the most powerful antioxidant activity. Finally, a preliminary attempt to produce a food prototype enriched in fermented strawberry tree fruits suggested the whole fruit fermented sample as the most promising from a preliminary sensory analysis.


Asunto(s)
Ericaceae , Frutas , Humanos , Antocianinas , Antioxidantes , Fermentación , Valor Nutritivo , Saccharomyces cerevisiae
2.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37834370

RESUMEN

Numerous studies have reported the pharmacological effects exhibited by Dittrichia viscosa, (D. viscosa) including antioxidant, cytotoxic, antiproliferative, and anticancer properties. In our research, our primary objective was to validate a prescreening methodology aimed at identifying the fraction that demonstrates the most potent antiproliferative and anticancer effects. Specifically, we investigated the impact of various extract fractions on the cytoskeleton using a screening method involving transgenic plants. Tumors are inherently heterogeneous, and the components of the cytoskeleton, particularly tubulin, are considered a strategic target for antitumor agents. To take heterogeneity into account, we used different lines of colorectal cancer, specifically one of the most common cancers regardless of gender. In patients with metastasis, the effectiveness of chemotherapy has been limited by severe side effects and by the development of resistance. Additional therapies and antiproliferative molecules are therefore needed. In our study, we used colon-like cell lines characterized by the expression of gastrointestinal differentiation markers (such as the HT-29 cell line) and undifferentiated cell lines showing the positive regulation of epithelial-mesenchymal transition and TGFß signatures (such as the DLD-1, SW480, and SW620 cell lines). We showed that all three of the D. viscosa extract fractions have an antiproliferative effect but the pre-screening on transgenic plants anticipated that the methanolic fraction may be the most promising, targeting the cytoskeleton specifically and possibly resulting in fewer side effects. Here, we show that the preliminary use of screening in transgenic plants expressing subcellular markers can significantly reduce costs and focus the advanced characterization only on the most promising therapeutic molecules.


Asunto(s)
Asteraceae , Neoplasias Colorrectales , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Metanol/farmacología , Células HT29 , Citoesqueleto , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico
3.
Molecules ; 24(18)2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31500173

RESUMEN

Olive paste (OP) is a novel by-product of olive mill industry composed of water, olive pulp, and skin. Due to its richness in bioactive compounds, OP exploitation for human consumption has recently been proposed. Starter driven fermented OP is characterized by a well-balanced lipid profile, rich in mono and polyunsaturated fatty acids, and a very good oxidative stability due to the high concentration of fat-soluble antioxidants. These characteristics make OP particularly suitable as a functional ingredient for food/feed industry, as well as for the formulation of nutraceutical products. New types of taralli were produced by adding 20% of fermented OP from black olives (cv Cellina di Nardò and Leccino) to the dough. The levels of bioactive compounds (polyphenols, triterpenic acids, tocochromanols, and carotenoids), as well as the fatty acid profile, were monitored during 180 days of storage and compared with control taralli produced with the same flour without OP supplementation. Taralli enriched with fermented OP showed significantly higher levels of bioactive compounds than conventional ones. Furthermore, enriched taralli maintained a low amount of saturated fatty acids and high levels of polyphenols, triterpenic acids, tocochromanols, and carotenoids, compared to the initial value, up to about 90 days in the usual conditions of retailer shelves.


Asunto(s)
Antioxidantes/farmacología , Pan/análisis , Olea/química , Fitoquímicos/química , Antioxidantes/química , Fermentación , Industria de Procesamiento de Alimentos , Humanos , Italia , Aceite de Oliva/química , Aceite de Oliva/farmacología , Oxidación-Reducción/efectos de los fármacos , Fitoquímicos/farmacología , Polifenoles/química , Polifenoles/farmacología
4.
J Sci Food Agric ; 98(1): 96-103, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28543537

RESUMEN

BACKGROUND: Table olives have been a component of the Mediterranean diet for centuries, with the trend for their consumption currently increasing worldwide. They are rich in bioactive molecules with nutritional, antioxidant, anti-inflammatory or hormone-like properties. In the present study, the concentrations of phenolics, triterpenic acids, carotenoids and vitamins, as well as fatty acid profiles and antioxidant activity, were analyzed in the edible portion of black table olives (Olea europea L.) from Italian (Cellina di Nardò and Leccino) and Greek (Kalamàta and Conservolea) cultivars fermented with selected autochthonous starters and in the corresponding monovarietal olive oils. RESULTS: On a fresh weight basis, Cellina di Nardò and Leccino table olives showed the highest total phenolic content. No significant differences were found with respect to the levels of total triterpenic (maslinic and oleanolic) acids and vitamin E among cultivars. All table olives were characterized by high amounts of oleic, linoleic and palmitic acids. Oils were richer in lipophilic antioxidants (carotenoids and tocochromanols) than table olives, which, instead, showed a higher content of polyphenols and triterpenic acids than oils. CONCLUSION: The present study demonstrates that fermented table olives are an excellent natural source of unsaturated fatty acids, as well as being nutritionally important health-promoting bioactive compounds. © 2017 Society of Chemical Industry.


Asunto(s)
Frutas/química , Lactobacillus plantarum/metabolismo , Olea/microbiología , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Antioxidantes/análisis , Antioxidantes/metabolismo , Ácidos Grasos Insaturados/análisis , Ácidos Grasos Insaturados/metabolismo , Fermentación , Frutas/metabolismo , Frutas/microbiología , Grecia , Italia , Olea/química , Olea/metabolismo , Polifenoles/análisis , Polifenoles/metabolismo , Vitamina E/análisis , Vitamina E/metabolismo
5.
Mar Drugs ; 13(8): 4654-81, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26230703

RESUMEN

Jellyfish are recorded with increasing frequency and magnitude in many coastal areas and several species display biological features comparable to the most popular Asiatic edible jellyfish. The biochemical and antioxidant properties of wild gelatinous biomasses, in terms of nutritional and nutraceutical values, are still largely unexplored. In this paper, three of the most abundant and commonly recorded jellyfish species (Aurelia sp.1, Cotylorhiza tuberculata and Rhizostoma pulmo) in the Mediterranean Sea were subject to investigation. A sequential enzymatic hydrolysis of jellyfish proteins was set up by pepsin and collagenase treatments of jellyfish samples after aqueous or hydroalcoholic protein extraction. The content and composition of proteins, amino acids, phenolics, and fatty acids of the three species were recorded and compared. Protein content (mainly represented by collagen) up to 40% of jellyfish dry weight were found in two of the three jellyfish species (C. tuberculata and R. pulmo), whereas the presence of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) was significantly higher in the zooxanthellate jellyfish C. tuberculata only. Remarkable antioxidant ability was also recorded from both proteinaceous and non proteinaceous extracts and the hydrolyzed protein fractions in all the three species. The abundance of collagen, peptides and other bioactive molecules make these Mediterranean gelatinous biomasses a largely untapped source of natural compounds of nutraceutical, cosmeceutical and pharmacological interest.


Asunto(s)
Antioxidantes/farmacología , Gelatina/farmacología , Escifozoos/metabolismo , Aminoácidos/metabolismo , Animales , Productos Biológicos/farmacología , Biomasa , Colágeno/metabolismo , Suplementos Dietéticos , Ecosistema , Ácidos Grasos Insaturados/metabolismo , Hidrólisis , Mar Mediterráneo
6.
Food Microbiol ; 46: 368-382, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25475307

RESUMEN

Table olives are one of the most important traditional fermented vegetables in Europe and their world consumption is constantly increasing. Conservolea and Kalamàta are the most important table olives Greek varieties. In the Greek system, the final product is obtained by spontaneous fermentations, without any chemical debittering treatment. This natural fermentation process is not predictable and strongly influenced by the physical-chemical conditions and by the presence of microorganisms contaminating the olives. Natural fermentations of Conservolea and Kalamàta cultivars black olives were studied in order to determine microbiological, biochemical and chemical evolution during the process. Following the process conditions generally used by producers, in both cultivars, yeasts were detected throughout the fermentation, whereas lactic acid bacteria (LAB) appeared in the last staged of the process. A new optimized specific protocol was developed to select autochthonous yeast and LAB isolates that can be good candidates as starters. These microorganisms were pre-selected for their ability to adapt to model brines, to have beta-glucosidase activity, not to produce biogenic amines. Chemical compounds deriving by microbiological activities and associated to the three different phases (30, 90 and 180 days) of the fermentation process were identified and were proposed as chemical descriptors to follow the fermentation progress.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiología de Alimentos/métodos , Olea/microbiología , Levaduras/aislamiento & purificación , Bacterias/genética , Bacterias/metabolismo , Fermentación , Olea/química , Levaduras/genética , Levaduras/metabolismo
7.
Int J Mol Sci ; 16(2): 3512-27, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25658801

RESUMEN

In this study, the quali-quantitative composition of hydrophilic (phenolic acids) and lipophilic (isoprenoids) extracts from whole-meal flour of five elite Italian durum wheat cultivars was determined. Significant differences in the content of bioactive compounds were observed among the wheat extracts, in particular concerning the content of bound phenolic acids, lutein and ß-tocotrienols. The cultivars Duilio and Svevo showed the highest amount of phenolic acids and isoprenoids, respectively. Extracts were evaluated for their anti-inflammatory activity on HT-29 human colon cells by measuring the levels of interleukin 8 (IL-8) and transforming growth factor ß1 (TGF-ß1). Durum wheat extracts significantly inhibited the secretion of the pro-inflammatory IL-8 mediator at 66 µg/mL of phenolic acids and at 0.2 µg/mL of isoprenoids. Conversely, the secretion of the anti-inflammatory mediator TGF-ß1 was not modified by neither hydrophilic nor lipophilic extracts. These results provide further insight into the potential of durum wheat on human health suggesting the significance of varieties with elevated contents of bioactive components.


Asunto(s)
Antiinflamatorios/farmacología , Extractos Vegetales/farmacología , Triticum/química , Harina , Regulación de la Expresión Génica/efectos de los fármacos , Células HT29 , Humanos , Hidroxibenzoatos/farmacología , Interleucina-8/metabolismo , Lipopolisacáridos/farmacología , Terpenos/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Triticum/clasificación
8.
Int J Mol Sci ; 15(4): 6725-40, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24756094

RESUMEN

Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, ß-carotene, ß-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.


Asunto(s)
Dióxido de Carbono/química , Carotenoides/aislamiento & purificación , Cucurbita/metabolismo , Cromatografía con Fluido Supercrítico , Presión , Solventes/química , Temperatura
9.
Int J Mol Sci ; 15(10): 19092-105, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25338048

RESUMEN

Plant cell cultures as valuable tools for the production of specific metabolites can be greatly improved by the application of elicitors including cyclodextrins (CDs) for enhancing the yields of the desired plant compounds. Here the effects of 2,6-dimethyl-ß-cyclodextrins (DIMEB) on the production of carotenoids and quinones from Artemisia annua L. cell suspension cultures were investigated. The addition of 50 mM DIMEB induced an early increase of intracellular carotenoid and quinone contents, which could be observed to a higher extent for lutein (10-fold), Q9 (3-fold) and Q10 (2.5-fold). Real Time PCR analysis revealed that the expression of 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) gene in DIMEB treated cell cultures after three days was 2.5-fold higher than in untreated samples, thus suggesting that the DIMEB induced increase of carotenoids and quinones could be due to the induction of the plastidial isoprenoid biosynthetic route. In addition, the DIMEB treatment induced an enhanced release of carotenoids and quinones into the culture medium of A. annua cell suspension cultures possibly due to the ability of CDs to form inclusion complexes with hydrophobic molecules.


Asunto(s)
Artemisia annua/genética , Artemisia annua/metabolismo , Terpenos/metabolismo , beta-Ciclodextrinas/farmacología , Isomerasas Aldosa-Cetosa/genética , Carotenoides/biosíntesis , Carotenoides/genética , Técnicas de Cultivo de Célula , Medios de Cultivo/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Luteína/genética , Pentosafosfatos/genética , Quinonas/metabolismo
10.
Int J Syst Evol Microbiol ; 63(Pt 1): 72-79, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22328613

RESUMEN

Strain SPC-1(T) was isolated from the phyllosphere of Cynara cardunculus L. var. sylvestris (Lamk) Fiori (wild cardoon), a Mediterranean native plant considered to be the wild ancestor of the globe artichoke and cultivated cardoon. This Gram-stain-negative, catalase-positive, oxidase-negative, non-spore-forming, rod-shaped and non-motile strain secreted copious amounts of an exopolysaccharide, formed slimy, viscous, orange-pigmented colonies and grew optimally at around pH 6.0-6.5 and 26-30 °C in the presence of 0-0.5 % NaCl. Phylogenetic analysis based on comparisons of 16S rRNA gene sequences demonstrated that SPC-1(T) clustered together with species of the genus Sphingomonas sensu stricto. The G+C content of the DNA (66.1 mol%), the presence of Q-10 as the predominant ubiquinone, sym-homospermidine as the predominant polyamine, 2-hydroxymyristic acid (C(14 : 0) 2-OH) as the major hydroxylated fatty acid, the absence of 3-hydroxy fatty acids and the presence of sphingoglycolipid supported this taxonomic position. 16S rRNA gene sequence analysis showed that SPC-1(T) was most closely related to Sphingomonas hankookensis ODN7(T), Sphingomonas insulae DS-28(T) and Sphingomonas panni C52(T) (98.19, 97.91 and 97.11 % sequence similarities, respectively). However, DNA-DNA hybridization analysis did not reveal any relatedness at the species level. Further differences were apparent in biochemical traits, and fatty acid, quinone and polyamine profiles leading us to conclude that strain SPC-1(T) represents a novel species of the genus Sphingomonas, for which the name Sphingomonas cynarae sp. nov. is proposed; the type strain is SPC-1(T) ( = JCM 17498(T) = ITEM 13494(T)). A component analysis of the exopolysaccharide suggested that it represents a novel type of sphingan containing glucose, rhamnose, mannose and galactose, while glucuronic acid, which is commonly found in sphingans, was not detected.


Asunto(s)
Cynara/microbiología , Filogenia , Polisacáridos Bacterianos/biosíntesis , Sphingomonas/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Poliaminas/análisis , ARN Ribosómico 16S/genética , Sphingomonas/genética , Sphingomonas/aislamiento & purificación , Ubiquinona/análisis
11.
Mar Drugs ; 11(5): 1728-62, 2013 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23697954

RESUMEN

On a global scale, jellyfish populations in coastal marine ecosystems exhibit increasing trends of abundance. High-density outbreaks may directly or indirectly affect human economical and recreational activities, as well as public health. As the interest in biology of marine jellyfish grows, a number of jellyfish metabolites with healthy potential, such as anticancer or antioxidant activities, is increasingly reported. In this study, the Mediterranean "fried egg jellyfish" Cotylorhiza tuberculata (Macri, 1778) has been targeted in the search forputative valuable bioactive compounds. A medusa extract was obtained, fractionated, characterized by HPLC, GC-MS and SDS-PAGE and assayed for its biological activity on breast cancer cells (MCF-7) and human epidermal keratinocytes (HEKa). The composition of the jellyfish extract included photosynthetic pigments, valuable ω-3 and ω-6 fatty acids, and polypeptides derived either from jellyfish tissues and their algal symbionts. Extract fractions showed antioxidant activity and the ability to affect cell viability and intercellular communication mediated by gap junctions (GJIC) differentially in MCF-7 and HEKa cells. A significantly higher cytotoxicity and GJIC enhancement in MCF-7 compared to HEKa cells was recorded. A putative action mechanism for the anticancer bioactivity through the modulation of GJIC has been hypothesized and its nutraceutical and pharmaceutical potential was discussed.


Asunto(s)
Antioxidantes/farmacología , Uniones Comunicantes/efectos de los fármacos , Escifozoos/química , Extractos de Tejidos/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Comunicación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Femenino , Uniones Comunicantes/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Células MCF-7 , Masculino , Extractos de Tejidos/química
12.
Food Chem ; 416: 135783, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36871508

RESUMEN

This study investigated the impact of changes in craft beer formulation, by modifying the unmalted cereal [(durum (Da) and soft (Ri) wheat), emmer (Em)], hops [Cascade (Ca) and Columbus (Co)], and yeast strains [M21 (Wi) - M02 (Ci)], on volatolomic, acidic, and olfactory profiles. Olfactory attributes were evaluated by the trained panel. Volatolomic and acidic profiles were determined by GC-MS. The sensory analysis detected significant differences for 5 attributes, including olfactory intensity and finesse, malty, herbaceous, and floral notes. Multivariate analysis of volatiles data, showed significant differences among the samples (p < 0.05). DaCaWi, DaCoWi, and RiCoCi beers differ from the others by their higher concentrations of esters, alcohols, and terpenes. A PLSC analysis was carried out between volatiles and odour attributes. As far as we know, this is the first investigation that shed light on the impact of 3-factors interaction on the sensory-volatolomic profile of craft beers, through a comprehensive multivariate approach.


Asunto(s)
Humulus , Saccharomyces cerevisiae , Cerveza/análisis , Grano Comestible , Quimiometría
13.
Foods ; 12(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37444331

RESUMEN

In this study, grape pomace is used as an ingredient to fortify pasta. The grape pomace phenolic component is highly accessible and available for metabolization in the human gut. Hence, grape pomace can be exploited as a source of polyphenols and fiber for sustainable and dietary beneficial food production. Analyses of soluble and bound phenols and volatile compounds in raw and cooked pasta were performed. In the uncooked pasta fortified with pomace, the content of soluble and bound phenolic molecules increased significantly. During the cooking process, the bound phenols were lost, while the soluble phenols doubled. The whole grape pomace flour as a pasta ingredient increased the fiber component by at least double, increased the soluble polyphenol component by at least 10 times, and doubled the isoprenoids (toco-chromanols and carotenoids) while maintaining the unaltered fatty acid content after cooking. In accordance with the polyphenol content, antioxidant activity resulted higher than that of the control pasta. Analysis of volatile compounds in fortified pasta, both uncooked and cooked, indicated an improvement in aromatic profile when compared to the control pasta. Our results show that durum wheat pasta fortified with whole pomace flour has bioactive potential for the reuse of food industry byproducts.

14.
Food Funct ; 14(22): 10083-10096, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37870074

RESUMEN

Supercritical fluid extraction with CO2 (SFE) is an alternative technology to conventional solvent extraction (CSE), to obtain food-grade bioactives from plants. Here, SFE and CSE extracts from carrot and pumpkin matrices, impregnated with hempseed or flaxseed oil as co-solvents, were characterized by HPLC and GC-MS, and their ability to counteract the inflammatory and oxidative phenomena underlying the onset of several pathologies was assessed in vitro. All extracts showed dose-dependent anti-inflammatory potential and demonstrated an ability to interfere with the pro-inflammatory effects of breast cancer cell-conditioned media, and to inhibit reactive oxygen species (ROS) accumulation and nitrite production (NP) in lipopolysaccharide-stimulated macrophages. Nuclear factor-erythroid-2-related factor 2 (Nrf2) is involved in these response mechanisms, as highlighted by the increased mRNA levels of its target genes revealed by quantitative real-time PCR analyses. NP and ROS concentrations negatively correlated with α-tocopherol and most carotenoids, but positively with the total tocopherol/total carotenoid ratio, suggesting an idiosyncratic effect of these bioactives on cell responses and emphasizing the need to focus on extract constituents' interactions.


Asunto(s)
Cucurbita , Daucus carota , Animales , Ratones , Lipopolisacáridos/farmacología , Dióxido de Carbono/farmacología , Medios de Cultivo Condicionados/farmacología , Especies Reactivas de Oxígeno , Células MDA-MB-231 , Extractos Vegetales/farmacología , Macrófagos , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Carotenoides/farmacología , Células RAW 264.7
15.
Microb Cell Fact ; 11: 32, 2012 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-22401291

RESUMEN

BACKGROUND: The molecular mechanisms altered by the traditional mutation and screening approach during the improvement of antibiotic-producing microorganisms are still poorly understood although this information is essential to design rational strategies for industrial strain improvement. In this study, we applied comparative genomics to identify all genetic changes occurring during the development of an erythromycin overproducer obtained using the traditional mutate-and- screen method. RESULTS: Compared with the parental Saccharopolyspora erythraea NRRL 2338, the genome of the overproducing strain presents 117 deletion, 78 insertion and 12 transposition sites, with 71 insertion/deletion sites mapping within coding sequences (CDSs) and generating frame-shift mutations. Single nucleotide variations are present in 144 CDSs. Overall, the genomic variations affect 227 proteins of the overproducing strain and a considerable number of mutations alter genes of key enzymes in the central carbon and nitrogen metabolism and in the biosynthesis of secondary metabolites, resulting in the redirection of common precursors toward erythromycin biosynthesis. Interestingly, several mutations inactivate genes coding for proteins that play fundamental roles in basic transcription and translation machineries including the transcription anti-termination factor NusB and the transcription elongation factor Efp. These mutations, along with those affecting genes coding for pleiotropic or pathway-specific regulators, affect global expression profile as demonstrated by a comparative analysis of the parental and overproducer expression profiles. Genomic data, finally, suggest that the mutate-and-screen process might have been accelerated by mutations in DNA repair genes. CONCLUSIONS: This study helps to clarify the mechanisms underlying antibiotic overproduction providing valuable information about new possible molecular targets for rationale strain improvement.


Asunto(s)
Antibacterianos/biosíntesis , Eritromicina/biosíntesis , Genes Bacterianos , Genómica , Saccharopolyspora/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Mutación , Sistemas de Lectura Abierta , Saccharopolyspora/metabolismo , Transcripción Genética
16.
Antioxidants (Basel) ; 11(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35326134

RESUMEN

This study aims to describe and compare the distribution of bioactive compounds, the fatty acids profiles, and the TEAC hydrophilic and lipophilic antioxidant activities in different fruit fractions (pulp, peel, and kernel) of two mango cultivars (Tommy Atkins and Keitt). All fractions are sources of health-promoting bioactive compounds. Regardless of cultivars, pulp had the highest content of phytosterols (~150 mg/100 g dw), peels ranked first for pentaciclic triterpenes (from 14.2 to 17.7 mg/100 g dw), tocopherols, carotenoids, and chlorophylls, and kernels for phenolic compounds (from 421.6 to 1464.8 mg/100 g dw), flavonoids, condensed tannins, as well as hydrophilic and lipophilic antioxidant activities. Differences between the two cultivars were evidenced for ascorbic acid, which showed the highest levels in the peels and kernels of Keitt and Tommy Atkins fruits, respectively. Similarly, the concentration of dehydroascorbic acid was higher in the pulp of Tommy Atkins than Keitt. The highest percentage of saturated fatty acids was observed in pulp (~42%) and kernels (~50%), monounsaturated fatty acids in kernels (up to 41%), and polyunsaturated fatty acids in peels (up to 52%). Our results add information to the current knowledge on nutraceuticals' distribution in different fractions of mango fruit, supporting its consumption as a healthy fruit and suggesting the great potential value of peels and kernels as sources of novel ingredients. Indeed, mango by-products generated during agronomic-to-industrial processing not only causes a significant environmental impact, but economic losses too. In this scenario, boosting research on conventional recovery methods offers eco-friendly solutions. However, green, novel biorefinery technologies may offer eco-friendly and profitable solutions, allowing the recovery of several more profitable by-products, sustaining their continuous growth since many bioactive compounds can be recovered from mango by-products that are potentially useful in the design of innovative nutraceutical, cosmeceutical, and pharmaceutical formulations.

17.
Antioxidants (Basel) ; 11(4)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35453463

RESUMEN

The world population is projected to increase to 9.9 billion by 2050 and, to ensure food security and quality, agriculture must sustainably multiply production, increase the nutritional value of fruit and vegetables, and preserve genetic variability. In this work, an Apulian landrace of Cucumis melo L. called "Carosello leccese" was grown in a greenhouse with a soilless technique under light-emitting diodes (LEDs) used as supplementary light system. The obtained results showed that "Carosello leccese" contains up to 71.0 mg·g-1 dried weight (DW) of potassium and several bioactive compounds important for human health such as methyl gallate (35.58 µg·g-1 DW), α-tocopherol (10.12 µg·g-1 DW), and ß-carotene (up to 9.29 µg·g-1 DW under LEDs). In fact, methyl gallate has antioxidative and antiviral effects in vitro and in vivo, tocopherols are well recognized for their effective inhibition of lipid oxidation in foods and biological systems and carotenoids are known to be very efficient physical and chemical quenchers of singlet oxygen. Finally, it was demonstrated that the LEDs' supplementary light did not negatively influence the biochemical profile of the peponids, confirming that it can be considered a valid technique to enhance horticultural production without reducing the content of the bioactive compounds of the fruits.

18.
Food Res Int ; 155: 111057, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35400435

RESUMEN

Zinc (Zn) plays a crucial role for human health. Zn deficiency is a common problem worldwide, causing health problems specifically related with detrimental effects on immune system. In this study we used hydroponic floating system and nutrient solutions (NS) with different levels of Zn (0.13 - control, 1.3, 2.6 and 5.2 mg/L Zn) in order to test a biofortification process aimed to increase the Zn tissue content of two different varieties (commercial and wild) of purslane. We evaluated the effects of the treatments on yield, visual and overall nutritional quality of the edible part of plants. Biofortification treatments did not affect plant yield, but increased the Zn content in the edible part of purslane by 1.8, 2.3 and 2.7-fold, respectively with 1.3, 2.6 and 5.2 mg/L Zn in the NS, so that the consumption of a serving portion of 150 g of baby leaf purslane biofortified with the highest Zn concentration would account for 21% of RDA (recommended daily allowance) for this nutrient. The Zn biofortification process did not affect colour parameters, therefore no differences in the product visual quality were observed. Zn treatment with 5.2 mg/L allowed to obtain an increase in neoxanthin, lutein and ß-carotene, while it was not possible to outline a common trend for the fatty acids profile in relation to the Zn treatments. The consumption of hydroponic purslane biofortified with Zn may allow to improve the Zn nutritional status of consumers, and provides different important phytochemicals, such as carotenoids and unsaturated fatty acids.


Asunto(s)
Biofortificación , Portulaca , Humanos , Valor Nutritivo , Hojas de la Planta/química , Portulaca/química , Zinc/análisis
19.
Foods ; 11(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36553812

RESUMEN

An important research target is improving the health benefits of traditional Mediterranean, durum wheat-based foods using innovative raw materials. In this study, we characterised wholemeal flours obtained from a traditional durum wheat cv. Svevo, two innovative durum wheat varieties (Svevo-High Amylose and Faridur), the naked barley cv. Chifaa and the elite lentil line 6002/ILWL118/1-1, evaluating them for targeted phytochemicals, untargeted metabolomics fingerprints and antioxidant capacity. To this aim, individual phenolic acids, flavonoids, tocochromanols and carotenoids were identified and quantified through HPLC-DAD, and the antioxidant capacities of both the extracts and whole meals were detected by ABTS assays. An untargeted metabolomics fingerprinting of the samples was conducted through NMR spectroscopy. Results showed that the innovative materials improved phytochemical profiles and antioxidant capacity compared to Svevo. In particular, Svevo-HA and Faridur had higher contents of ferulic and sinapic acids, ß-tocotrienol and lutein. Moreover, Chifaa is a rich source of phenolic acids, ß-tocopherols, lutein and zeaxanthin whereas lentil of flavonoids (i.e., catechin and procyanidin B2). The NMR profiles of Svevo-HA and Faridur showed a significant reduction of sugar content, malate and tryptophan compared to that of Svevo. Finally, substantial differences characterised the lentil profiles, especially for citrate, trigonelline and phenolic resonances of secondary metabolites, such as catechin-like compounds. Overall, these results support the potential of the above innovative materials to renew the health value of traditional Mediterranean durum wheat-based products.

20.
Front Nutr ; 9: 844162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571925

RESUMEN

The results showed that soil electrical conductivity, (EC2: 7 dS/m) increased soluble solids, lycopene content, total phenolic content, hydrophilic and lipophilic radical scavenging activities (HRSA and LRSA) by 14.2, 149, 20, 46.4, and 19.0%, respectively, compared with control. Under 0.5% spent engine oil (SEO), flavonoid content decreased by 21.7% compared with the control. HRSA and LRSA of fruits subjected to EC2/SEO1 treatment were, respectively, 45.9 and 35.5% lower than control. The a*/b* ratio was positively and significantly (P < 0.01) correlated with ß-carotene (R = 0.78), lycopene (R = 0.68), total vitamin C (R = 0.71), α-tocopherol (R = 0.83), γ-tocopherol (R = 0.66), HRSA (R = 0.93), LRSA (R = 0.80), and soluble solids (R = 0.84) suggesting that it may be a promising indicator of fruit quality in areas affected by such constraints. The research revealed that combined stresses induce responses markedly different from those of individual treatments, which strain the need to focus on how the interaction between stresses may affect the functional quality of tomato fruits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA