RESUMEN
Eastern equine encephalitis virus (EEEV) is one of the most virulent viruses endemic to North America. No licensed vaccines or antiviral therapeutics are available to combat this infection, which has recently shown an increase in human cases. Here, we characterize human monoclonal antibodies (mAbs) isolated from a survivor of natural EEEV infection with potent (<20 pM) inhibitory activity of EEEV. Cryo-electron microscopy reconstructions of two highly neutralizing mAbs, EEEV-33 and EEEV-143, were solved in complex with chimeric Sindbis/EEEV virions to 7.2 Å and 8.3 Å, respectively. The mAbs recognize two distinct antigenic sites that are critical for inhibiting viral entry into cells. EEEV-33 and EEEV-143 protect against disease following stringent lethal aerosol challenge of mice with highly pathogenic EEEV. These studies provide insight into the molecular basis for the neutralizing human antibody response against EEEV and can facilitate development of vaccines and candidate antibody therapeutics.
Asunto(s)
Aerosoles/administración & dosificación , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Virus de la Encefalitis Equina del Este/inmunología , Encefalomielitis Equina/inmunología , Encefalomielitis Equina/prevención & control , Adulto , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/inmunología , Antígenos Virales/inmunología , Microscopía por Crioelectrón , Modelos Animales de Enfermedad , Virus de la Encefalitis Equina del Este/ultraestructura , Encefalomielitis Equina/virología , Epítopos/química , Femenino , Glicoproteínas/inmunología , Humanos , Ratones , Modelos Moleculares , Mutagénesis/genética , Pruebas de Neutralización , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/inmunología , Virus Sindbis/inmunología , Virión/inmunología , Virión/ultraestructura , Internalización del VirusRESUMEN
"Allosteric" was first introduced to mean the other site (i.e., a site distinct from the active or orthosteric site), an adjective for "regulation" to imply a regulatory outcome resulting from ligand binding at another site. That original idea outlines a system with two ligand-binding events at two distinct locations on a macromolecule (originally a protein system), which defines a four-state energy cycle. An allosteric energy cycle provides a quantifiable allosteric coupling constant and focuses our attention on the unique properties of the four equilibrated protein complexes that constitute the energy cycle. Because many observed phenomena have been referenced as "allosteric regulation" in the literature, the goal of this work is to use literature examples to explore which systems are and are not consistent with the two-ligand thermodynamic energy cycle-based definition of allosteric regulation. We emphasize the need for consistent language so comparisons can be made among the ever-increasing number of allosteric systems. Building on the mutually exclusive natures of an energy cycle definition of allosteric regulation versus classic two-state models, we conclude our discussion by outlining how the often-proposed Rube-Goldberg-like mechanisms are likely inconsistent with an energy cycle definition of allosteric regulation.
Asunto(s)
Regulación Alostérica , Sitio Alostérico , Ligandos , Termodinámica , Humanos , Animales , Biocatálisis , Pliegue de Proteína , Proteínas/metabolismoRESUMEN
Heat shock protein (Hsp) 104 is a hexameric ATPases associated with diverse cellular activities motor protein that enables cells to survive extreme stress. Hsp104 couples the energy of ATP binding and hydrolysis to solubilize proteins trapped in aggregated structures. The mechanism by which Hsp104 disaggregates proteins is not completely understood but may require Hsp104 to partially or completely translocate polypeptides across its central channel. Here, we apply transient state, single turnover kinetics to investigate the ATP-dependent translocation of soluble polypeptides by Hsp104 and Hsp104A503S, a potentiated variant developed to resolve misfolded conformers implicated in neurodegenerative disease. We establish that Hsp104 and Hsp104A503S can operate as nonprocessive translocases for soluble substrates, indicating a "partial threading" model of translocation. Remarkably, Hsp104A503S exhibits altered coupling of ATP binding to translocation and decelerated dissociation from polypeptide substrate compared to Hsp104. This altered coupling and prolonged substrate interaction likely increases entropic pulling forces, thereby enabling more effective aggregate dissolution by Hsp104A503S.
Asunto(s)
Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas de Choque Térmico/genética , Hidrólisis , Cinética , Proteínas Mutantes/metabolismo , Péptidos/metabolismo , Agregado de Proteínas , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-ActividadRESUMEN
ClpB and DnaKJE provide protection to Escherichia coli cells during extreme environmental stress. Together, this co-chaperone system can resolve protein aggregates, restoring misfolded proteins to their native form and function in solubilizing damaged proteins for removal by the cell's proteolytic systems. DnaK is the component of the KJE system that directly interacts with ClpB. There are many hypotheses for how DnaK affects ClpB-catalyzed disaggregation, each with some experimental support. Here, we build on our recent work characterizing the molecular mechanism of ClpB-catalyzed polypeptide translocation by developing a stopped-flow FRET assay that allows us to detect ClpB's movement on model polypeptide substrates in the absence or presence of DnaK. We find that DnaK induces ClpB to dissociate from the polypeptide substrate. We propose that DnaK acts as a peptide release factor, binding ClpB and causing the ClpB conformation to change to a low-peptide affinity state. Such a role for DnaK would allow ClpB to rebind to another portion of an aggregate and continue nonprocessive translocation to disrupt the aggregate.
Asunto(s)
Endopeptidasa Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Péptidos/metabolismo , Regulación Alostérica , Transferencia Resonante de Energía de Fluorescencia , Unión Proteica , Especificidad por SustratoRESUMEN
The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of Xenopus laevis polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5' end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer-template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.
Asunto(s)
Microscopía por Crioelectrón , ADN Polimerasa I , ADN Primasa , Replicación del ADN , Modelos Moleculares , Xenopus laevis , ADN Primasa/química , ADN Primasa/metabolismo , ADN Primasa/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/química , Animales , Dominio Catalítico , ADN/metabolismo , ADN/química , ADN/biosíntesis , Cartilla de ADN/metabolismo , Cartilla de ADN/genética , ARN/metabolismo , ARN/química , Conformación ProteicaRESUMEN
The recently published high-resolution R388 T4SS structure provides exciting new details about the complete complex of T4SS, including the components making up the stalk and arches, numerous symmetry mismatches between regions of the complex, and an intriguing interpretation of the closed stalk and radial symmetry of the inner membrane complex, which is related to pilus biogenesis assembly. However, there are a few unidentified densities in the electron microscopy map and portions of the identified component sequences for which the structure is not yet known. It is also unclear how well this minimized DNA-transporting T4SS predicts the structure of other T4SSs, such as expanded systems and those that transport proteins rather than DNA. In this review, we evaluate what can be inferred from the recent high-resolution structure of the R388 T4SS with respect to the Cag and Dot/Icm systems. These systems were selected because, given what is currently known about these systems, we expect them to present most structural differences compared to the R388 T4SS structure. Furthermore, we discuss bacterial physiology and diversity, the T4SS structures and their variations between different bacterial species. These insights may prove beneficial for researchers who elucidate the structure and functions of T4SS in different bacterial species.
Asunto(s)
ADN , Sistemas de Secreción Tipo IV , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Transporte Biológico , Proteínas Bacterianas/genéticaRESUMEN
The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5'-end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer/template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.
RESUMEN
Cryo-electron microscopy (cryo-EM) has become an unrivaled tool for determining the structure of macromolecular complexes. The biological function of macromolecular complexes is inextricably tied to the flexibility of these complexes. Single particle cryo-EM can reveal the conformational heterogeneity of a biochemically pure sample, leading to well-founded mechanistic hypotheses about the roles these complexes play in biology. However, the processing of increasingly large, complex datasets using traditional data processing strategies is exceedingly expensive in both user time and computational resources. Current innovations in data processing capitalize on artificial intelligence (AI) to improve the efficiency of data analysis and validation. Here, we review new tools that use AI to automate the data analysis steps of particle picking, 3D map reconstruction, and local resolution determination. We discuss how the application of AI moves the field forward, and what obstacles remain. We also introduce potential future applications of AI to use cryo-EM in understanding protein communities in cells.
RESUMEN
Legionella pneumophila is an opportunistic pathogen that causes the potentially fatal pneumonia known as Legionnaires' disease. The pathology associated with infection depends on bacterial delivery of effector proteins into the host via the membrane spanning Dot/Icm type IV secretion system (T4SS). We have determined sub-3.0 Å resolution maps of the Dot/Icm T4SS core complex by single particle cryo-EM. The high-resolution structural analysis has allowed us to identify proteins encoded outside the Dot/Icm genetic locus that contribute to the core T4SS structure. We can also now define two distinct areas of symmetry mismatch, one that connects the C18 periplasmic ring (PR) and the C13 outer membrane cap (OMC) and one that connects the C13 OMC with a 16-fold symmetric dome. Unexpectedly, the connection between the PR and OMC is DotH, with five copies sandwiched between the OMC and PR to accommodate the symmetry mismatch. Finally, we observe multiple conformations in the reconstructions that indicate flexibility within the structure.
Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Microscopía por Crioelectrón/métodos , Legionella pneumophila/química , Proteínas Bacterianas/química , Conformación Proteica , Especificidad de la Especie , Sistemas de Secreción Tipo IV/químicaRESUMEN
The pathogenesis of Helicobacter pylori-associated gastric cancer is dependent on delivery of CagA into host cells through a type IV secretion system (T4SS). The H. pylori Cag T4SS includes a large membrane-spanning core complex containing five proteins, organized into an outer membrane cap (OMC), a periplasmic ring (PR) and a stalk. Here, we report cryo-EM reconstructions of a core complex lacking Cag3 and an improved map of the wild-type complex. We define the structures of two unique species-specific components (Cag3 and CagM) and show that Cag3 is structurally similar to CagT. Unexpectedly, components of the OMC are organized in a 1:1:2:2:5 molar ratio (CagY:CagX:CagT:CagM:Cag3). CagX and CagY are components of both the OMC and the PR and bridge the symmetry mismatch between these regions. These results reveal that assembly of the H. pylori T4SS core complex is dependent on incorporation of interwoven species-specific components.
Asunto(s)
Proteínas Bacterianas/ultraestructura , Helicobacter pylori/química , Sistemas de Secreción Tipo IV/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Microscopía por Crioelectrón , Modelos Moleculares , Conformación Proteica , Especificidad de la Especie , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/clasificaciónRESUMEN
Legionella pneumophila is an opportunistic pathogen that causes the potentially fatal pneumonia Legionnaires' Disease. This infection and subsequent pathology require the Dot/Icm Type IV Secretion System (T4SS) to deliver effector proteins into host cells. Compared to prototypical T4SSs, the Dot/Icm assembly is much larger, containing ~27 different components including a core complex reported to be composed of five proteins: DotC, DotD, DotF, DotG, and DotH. Using single particle cryo-electron microscopy (cryo-EM), we report reconstructions of the core complex of the Dot/Icm T4SS that includes a symmetry mismatch between distinct structural features of the outer membrane cap (OMC) and periplasmic ring (PR). We present models of known core complex proteins, DotC, DotD, and DotH, and two structurally similar proteins within the core complex, DotK and Lpg0657. This analysis reveals the stoichiometry and contact interfaces between the key proteins of the Dot/Icm T4SS core complex and provides a framework for understanding a complex molecular machine.