Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Med Genet A ; 191(7): 1814-1825, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37053206

RESUMEN

Koolen-de Vries syndrome (KdVS) is a rare multisystemic disorder caused by a microdeletion on chromosome 17q21.31 including KANSL1 gene or intragenic pathogenic variants in KANSL1 gene. Here, we describe the clinical and genetic spectrum of eight Turkish children with KdVS due to a de novo 17q21.31 deletion, and report on several rare/new conditions. Eight patients from unrelated families aged between 17 months and 19 years enrolled in this study. All patients evaluated by a clinical geneticist, and the clinical diagnosis were confirmed by molecular karyotyping. KdVS patients had some common distinctive facial features. All patients had neuromotor retardation, and speech and language delay. Epilepsy, structural brain anomalies, ocular, ectodermal, and musculoskeletal findings, and friendly personality were remarkable in more than half of the patients. Hypertension, hypothyroidism, celiac disease, and postaxial polydactyly were among the rare/new conditions. Our study contributes to the clinical spectrum of patients with KdVS, while also provide a review by comparing them with previous cohort studies.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Humanos , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/epidemiología , Anomalías Múltiples/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/genética , Deleción Cromosómica , Enfermedades Raras/genética , Fenotipo , Cromosomas Humanos Par 17/genética
2.
Pediatr Neurol ; 157: 100-107, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38905742

RESUMEN

BACKGROUND: To evaluate the utility of genetic testing for etiology-specific diagnosis (ESD) in infantile epileptic spasms syndrome (IESS) with a step-based diagnostic approach in the next-generation sequencing (NGS) era. METHODS: The study cohort consisted of 314 patients with IESS, followed by the Pediatric Neurology Division of Ege University Hospital between 2005 and 2021. The ESD was evaluated using a step-based approach: step I (clinical phenomenology), step II (neuroimaging), step III (metabolic screening), and step IV (genetic testing). The diagnostic utility of genetic testing was evaluated to compare the early-NGS period (2005 to 2013, n = 183) and the NGS era (2014 to 2021, n = 131). RESULTS: An ESD was established in 221 of 314 (70.4%) infants with IESS: structural, 40.8%; genetic, 17.2%; metabolic, 8.3%; immune-infectious, 4.1%. The diagnostic yield of genetic testing increased from 8.9% to 41.7% in the cohort during the four follow-up periods. The rate of unknown etiology decreased from 34.9% to 22.1% during the follow-up periods. The genetic ESD was established as 27.4% with genetic testing in the NGS era. The genetic testing in the NGS era increased dramatically in subgroups with unknown and structural etiologies. The diagnostic yields of the epilepsy panels increased from 7.6% to 19.2%. However, the diagnostic yield of whole exome sequencing remained at similar levels during the early-NGS period at 54.5% and in the NGS era at 59%. CONCLUSIONS: The more genetic ESD (27.4%) was defined for IESS in the NGS era with the implication of precision therapy (37.7%).


Asunto(s)
Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Espasmos Infantiles , Humanos , Espasmos Infantiles/genética , Espasmos Infantiles/diagnóstico , Lactante , Masculino , Femenino , Estudios de Cohortes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA