Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 19(4): 2334-2342, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30895796

RESUMEN

Optical coherence tomography (OCT) can be utilized with significant speckle reduction techniques and highly scattering contrast agents for non-invasive, contrast-enhanced imaging of living tissues at the cellular scale. The advantages of reduced speckle noise and improved targeted contrast can be harnessed to track objects as small as 2 µm in vivo, which enables applications for cell tracking and quantification in living subjects. Here we demonstrate the use of large gold nanorods as contrast agents for detecting individual micron-sized polystyrene beads and single myeloma cells in blood circulation using speckle-modulating OCT. This report marks the first time that OCT has been used to detect individual cells within blood in vivo. This technical capability unlocks exciting opportunities for dynamic detection and quantification of tumor cells circulating in living subjects.


Asunto(s)
Medios de Contraste/farmacología , Mieloma Múltiple/sangre , Nanotubos/química , Células Neoplásicas Circulantes/patología , Animales , Medios de Contraste/química , Oro/química , Humanos , Ratones , Mieloma Múltiple/patología , Poliestirenos/química , Análisis de la Célula Individual/métodos , Tomografía de Coherencia Óptica/métodos
2.
Neuroscience ; 445: 163-171, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31730795

RESUMEN

Angelman syndrome is a neurodevelopmental disorder presenting with severe deficits in motor, speech, and cognitive abilities. The primary genetic cause of Angelman syndrome is a maternally transmitted mutation in the Ube3a gene, which has been successfully modeled in Ube3a mutant mice. Phenotypes have been extensively reported in young adult Ube3a mice. Because symptoms continue throughout life in Angelman syndrome, we tested multiple behavioral phenotypes of male Ube3a mice and WT littermate controls at older adult ages. Social behaviors on both the 3-chambered social approach and male-female social interaction tests showed impairments in Ube3a at 12 months of age. Anxiety-related scores on both the elevated plus-maze and the light ↔ dark transitions assays indicated anxiety-like phenotypes in 12 month old Ube3a mice. Open field locomotion parameters were consistently lower at 12 months. Reduced general exploratory locomotion at this age prevented the interpretation of an anxiety-like phenotype, and likely impacted social tasks. Robust phenotypes in middle-aged Ube3a mice appear to result from continued motor decline. Motor deficits may provide the best outcome measures for preclinical testing of pharmacological targets, towards reductions of symptoms in adults with Angelman syndrome.


Asunto(s)
Síndrome de Angelman , Síndrome de Angelman/genética , Animales , Escala de Evaluación de la Conducta , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Fenotipo , Ubiquitina-Proteína Ligasas/genética
3.
Sci Rep ; 9(1): 10388, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31316099

RESUMEN

Current in vivo neuroimaging techniques provide limited field of view or spatial resolution and often require exogenous contrast. These limitations prohibit detailed structural imaging across wide fields of view and hinder intraoperative tumor margin detection. Here we present a novel neuroimaging technique, speckle-modulating optical coherence tomography (SM-OCT), which allows us to image the brains of live mice and ex vivo human samples with unprecedented resolution and wide field of view using only endogenous contrast. The increased visibility provided by speckle elimination reveals white matter fascicles and cortical layer architecture in brains of live mice. To our knowledge, the data reported herein represents the highest resolution imaging of murine white matter structure achieved in vivo across a wide field of view of several millimeters. When applied to an orthotopic murine glioblastoma xenograft model, SM-OCT readily identifies brain tumor margins with resolution of approximately 10 µm. SM-OCT of ex vivo human temporal lobe tissue reveals fine structures including cortical layers and myelinated axons. Finally, when applied to an ex vivo sample of a low-grade glioma resection margin, SM-OCT is able to resolve the brain tumor margin. Based on these findings, SM-OCT represents a novel approach for intraoperative tumor margin detection and in vivo neuroimaging.


Asunto(s)
Neuroimagen/métodos , Tomografía de Coherencia Óptica/métodos , Sustancia Blanca/diagnóstico por imagen , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Bases de Datos de Compuestos Químicos , Modelos Animales de Enfermedad , Femenino , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Glioma/diagnóstico por imagen , Glioma/patología , Humanos , Márgenes de Escisión , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos
4.
ACS Nano ; 13(7): 7985-7995, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31259527

RESUMEN

By their nature, tumors pose a set of profound challenges to the immune system with respect to cellular recognition and response coordination. Recent research indicates that leukocyte subpopulations, especially tumor-associated macrophages (TAMs), can exert substantial influence on the efficacy of various cancer immunotherapy treatment strategies. To better study and understand the roles of TAMs in determining immunotherapeutic outcomes, significant technical challenges associated with dynamically monitoring single cells of interest in relevant live animal models of solid tumors must be overcome. However, imaging techniques with the requisite combination of spatiotemporal resolution, cell-specific contrast, and sufficient signal-to-noise at increasing depths in tissue are exceedingly limited. Here we describe a method to enable high-resolution, wide-field, longitudinal imaging of TAMs based on speckle-modulating optical coherence tomography (SM-OCT) and spectral scattering from an optimized contrast agent. The approach's improvements to OCT detection sensitivity and noise reduction enabled high-resolution OCT-based observation of individual cells of a specific host lineage in live animals. We found that large gold nanorods (LGNRs) that exhibit a narrow-band, enhanced scattering cross-section can selectively label TAMs and activate microglia in an in vivo orthotopic murine model of glioblastoma multiforme. We demonstrated near real-time tracking of the migration of cells within these myeloid subpopulations. The intrinsic spatiotemporal resolution, imaging depth, and contrast sensitivity reported herein may facilitate detailed studies of the fundamental behaviors of TAMs and other leukocytes at the single-cell level in vivo, including intratumoral distribution heterogeneity and roles in modulating cancer proliferation.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Rastreo Celular , Medios de Contraste/química , Imagenología Tridimensional , Células Mieloides/patología , Tomografía de Coherencia Óptica , Animales , Línea Celular Tumoral , Medios de Contraste/síntesis química , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Experimentales/diagnóstico por imagen , Tamaño de la Partícula , Propiedades de Superficie
5.
ACS Nano ; 12(12): 11986-11994, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30422624

RESUMEN

Optical coherence tomography angiography (OCTA) is an important tool for investigating vascular networks and microcirculation in living tissue. Traditional OCTA detects blood vessels via intravascular dynamic scattering signals derived from the movements of red blood cells (RBCs). However, the low hematocrit and long latency between RBCs in capillaries make these OCTA signals discontinuous, leading to incomplete mapping of the vascular networks. OCTA imaging of microvascular circulation is particularly challenging in tumors due to the abnormally slow blood flow in angiogenic tumor vessels and strong attenuation of light by tumor tissue. Here, we demonstrate in vivo that gold nanoprisms (GNPRs) can be used as OCT contrast agents working in the second near-infrared window, significantly enhancing the dynamic scattering signals in microvessels and improving the sensitivity of OCTA in skin tissue and melanoma tumors in live mice. With GNPRs as contrast agents, the postinjection OCT angiograms showed 41 and 59% more microvasculature than preinjection angiograms in healthy mouse skin and melanoma tumors, respectively. By enabling better characterization of microvascular circulation in vivo, GNPR-enhanced OCTA could lead to better understanding of vascular functions during pathological conditions, more accurate measurements of therapeutic response, and improved patient prognoses.


Asunto(s)
Angiografía , Medios de Contraste/química , Oro/química , Nanopartículas del Metal/química , Tomografía de Coherencia Óptica , Animales , Medios de Contraste/administración & dosificación , Eritrocitos/patología , Femenino , Oro/administración & dosificación , Rayos Infrarrojos , Melanoma/irrigación sanguínea , Melanoma/diagnóstico por imagen , Nanopartículas del Metal/administración & dosificación , Ratones , Ratones Desnudos , Tamaño de la Partícula , Piel/irrigación sanguínea , Piel/diagnóstico por imagen , Propiedades de Superficie , Microambiente Tumoral
6.
Sci Rep ; 7(1): 1086, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28439123

RESUMEN

Optical Coherence Tomography (OCT) imaging of living subjects offers increased depth of penetration while maintaining high spatial resolution when compared to other optical microscopy techniques. However, since most protein biomarkers do not exhibit inherent contrast detectable by OCT, exogenous contrast agents must be employed for imaging specific cellular biomarkers of interest. While a number of OCT contrast agents have been previously studied, demonstrations of molecular targeting with such agents in live animals have been historically challenging and notably limited in success. Here we demonstrate for the first time that microbeads (µBs) can be used as contrast agents to target cellular biomarkers in lymphatic vessels and can be detected by OCT using a phase variance algorithm. This molecular OCT method enables in vivo imaging of the expression profiles of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), a biomarker that plays crucial roles in inflammation and tumor metastasis. In vivo OCT imaging of LVYE-1 showed that the biomarker was significantly down-regulated during inflammation induced by acute contact hypersensitivity (CHS). Our work demonstrated a powerful molecular imaging tool that can be used for high resolution studies of lymphatic function and dynamics in models of inflammation, tumor development, and other lymphatic diseases.


Asunto(s)
Endotelio Linfático/química , Glicoproteínas/análisis , Microscopía Intravital/métodos , Vasos Linfáticos/química , Imagen Molecular/métodos , Tomografía de Coherencia Óptica/métodos , Animales , Biomarcadores/análisis , Medios de Contraste/administración & dosificación , Femenino , Proteínas de Transporte de Membrana , Ratones Endogámicos BALB C , Microesferas
7.
Nat Commun ; 8: 15845, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28632205

RESUMEN

Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin-features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods.


Asunto(s)
Córnea/diagnóstico por imagen , Pabellón Auricular/diagnóstico por imagen , Retina/diagnóstico por imagen , Piel/diagnóstico por imagen , Glándulas Sudoríparas/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Animales , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Mecanorreceptores/metabolismo , Ratones , Modelos Biológicos , Fantasmas de Imagen
8.
Nat Commun ; 8: 16131, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28695909

RESUMEN

This corrects the article DOI: 10.1038/ncomms15845.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA