Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 172(3): 454-464.e11, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29361316

RESUMEN

The spliceosome is a highly dynamic macromolecular complex that precisely excises introns from pre-mRNA. Here we report the cryo-EM 3D structure of the human Bact spliceosome at 3.4 Å resolution. In the Bact state, the spliceosome is activated but not catalytically primed, so that it is functionally blocked prior to the first catalytic step of splicing. The spliceosomal core is similar to the yeast Bact spliceosome; important differences include the presence of the RNA helicase aquarius and peptidyl prolyl isomerases. To examine the overall dynamic behavior of the purified spliceosome, we developed a principal component analysis-based approach. Calculating the energy landscape revealed eight major conformational states, which we refined to higher resolution. Conformational differences of the highly flexible structural components between these eight states reveal how spliceosomal components contribute to the assembly of the spliceosome, allowing it to generate a dynamic interaction network required for its subsequent catalytic activation.


Asunto(s)
Simulación de Dinámica Molecular , Empalmosomas/química , Células HeLa , Humanos , Empalmosomas/metabolismo , Empalmosomas/ultraestructura
2.
Cell ; 170(4): 701-713.e11, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28781166

RESUMEN

Little is known about the spliceosome's structure before its extensive remodeling into a catalytically active complex. Here, we report a 3D cryo-EM structure of a pre-catalytic human spliceosomal B complex. The U2 snRNP-containing head domain is connected to the B complex main body via three main bridges. U4/U6.U5 tri-snRNP proteins, which are located in the main body, undergo significant rearrangements during tri-snRNP integration into the B complex. These include formation of a partially closed Prp8 conformation that creates, together with Dim1, a 5' splice site (ss) binding pocket, displacement of Sad1, and rearrangement of Brr2 such that it contacts its U4/U6 substrate and is poised for the subsequent spliceosome activation step. The molecular organization of several B-specific proteins suggests that they are involved in negatively regulating Brr2, positioning the U6/5'ss helix, and stabilizing the B complex structure. Our results indicate significant differences between the early activation phase of human and yeast spliceosomes.


Asunto(s)
Empalmosomas/química , Núcleo Celular/química , Microscopía por Crioelectrón , Células HeLa , Humanos , Modelos Moleculares , Proteínas de Unión al ARN/química , Ribonucleoproteínas Nucleares Pequeñas/química , Saccharomyces cerevisiae/química , Empalmosomas/ultraestructura
3.
Nature ; 629(8010): 219-227, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570683

RESUMEN

The Integrator complex can terminate RNA polymerase II (Pol II) in the promoter-proximal region of genes. Previous work has shed light on how Integrator binds to the paused elongation complex consisting of Pol II, the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) and how it cleaves the nascent RNA transcript1, but has not explained how Integrator removes Pol II from the DNA template. Here we present three cryo-electron microscopy structures of the complete Integrator-PP2A complex in different functional states. The structure of the pre-termination complex reveals a previously unresolved, scorpion-tail-shaped INTS10-INTS13-INTS14-INTS15 module that may use its 'sting' to open the DSIF DNA clamp and facilitate termination. The structure of the post-termination complex shows that the previously unresolved subunit INTS3 and associated sensor of single-stranded DNA complex (SOSS) factors prevent Pol II rebinding to Integrator after termination. The structure of the free Integrator-PP2A complex in an inactive closed conformation2 reveals that INTS6 blocks the PP2A phosphatase active site. These results lead to a model for how Integrator terminates Pol II transcription in three steps that involve major rearrangements.


Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , Proteína Fosfatasa 2 , ARN Polimerasa II , ARN Polimerasa II/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/ultraestructura , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/ultraestructura , Terminación de la Transcripción Genética , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Unión Proteica , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/ultraestructura , Subunidades de Proteína/metabolismo , Subunidades de Proteína/química
4.
Nature ; 630(8018): 1012-1019, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778104

RESUMEN

Early spliceosome assembly can occur through an intron-defined pathway, whereby U1 and U2 small nuclear ribonucleoprotein particles (snRNPs) assemble across the intron1. Alternatively, it can occur through an exon-defined pathway2-5, whereby U2 binds the branch site located upstream of the defined exon and U1 snRNP interacts with the 5' splice site located directly downstream of it. The U4/U6.U5 tri-snRNP subsequently binds to produce a cross-intron (CI) or cross-exon (CE) pre-B complex, which is then converted to the spliceosomal B complex6,7. Exon definition promotes the splicing of upstream introns2,8,9 and plays a key part in alternative splicing regulation10-16. However, the three-dimensional structure of exon-defined spliceosomal complexes and the molecular mechanism of the conversion from a CE-organized to a CI-organized spliceosome, a pre-requisite for splicing catalysis, remain poorly understood. Here cryo-electron microscopy analyses of human CE pre-B complex and B-like complexes reveal extensive structural similarities with their CI counterparts. The results indicate that the CE and CI spliceosome assembly pathways converge already at the pre-B stage. Add-back experiments using purified CE pre-B complexes, coupled with cryo-electron microscopy, elucidate the order of the extensive remodelling events that accompany the formation of B complexes and B-like complexes. The molecular triggers and roles of B-specific proteins in these rearrangements are also identified. We show that CE pre-B complexes can productively bind in trans to a U1 snRNP-bound 5' splice site. Together, our studies provide new mechanistic insights into the CE to CI switch during spliceosome assembly and its effect on pre-mRNA splice site pairing at this stage.


Asunto(s)
Exones , Intrones , Empalme del ARN , Empalmosomas , Humanos , Empalme Alternativo , Microscopía por Crioelectrón , Exones/genética , Intrones/genética , Modelos Moleculares , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , Empalmosomas/metabolismo , Empalmosomas/química , Empalmosomas/ultraestructura , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/ultraestructura
5.
EMBO J ; 43(6): 1065-1088, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383864

RESUMEN

The B complex is a key intermediate stage of spliceosome assembly. To improve the structural resolution of monomeric, human spliceosomal B (hB) complexes and thereby generate a more comprehensive hB molecular model, we determined the cryo-EM structure of B complex dimers formed in the presence of ATP γ S. The enhanced resolution of these complexes allows a finer molecular dissection of how the 5' splice site (5'ss) is recognized in hB, and new insights into molecular interactions of FBP21, SNU23 and PRP38 with the U6/5'ss helix and with each other. It also reveals that SMU1 and RED are present as a heterotetrameric complex and are located at the interface of the B dimer protomers. We further show that MFAP1 and UBL5 form a 5' exon binding channel in hB, and elucidate the molecular contacts stabilizing the 5' exon at this stage. Our studies thus yield more accurate models of protein and RNA components of hB complexes. They further allow the localization of additional proteins and protein domains (such as SF3B6, BUD31 and TCERG1) whose position was not previously known, thereby uncovering new functions for B-specific and other hB proteins during pre-mRNA splicing.


Asunto(s)
Empalme del ARN , Empalmosomas , Humanos , Empalmosomas/genética , Microscopía por Crioelectrón , Sitios de Empalme de ARN , Exones , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Elongación Transcripcional/genética , Proteínas Nucleares/metabolismo
6.
Mol Cell ; 80(1): 127-139.e6, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007253

RESUMEN

Human spliceosomes contain numerous proteins absent in yeast, whose functions remain largely unknown. Here we report a 3D cryo-EM structure of the human spliceosomal C complex at 3.4 Å core resolution and 4.5-5.7 Å at its periphery, and aided by protein crosslinking we determine its molecular architecture. Our structure provides additional insights into the spliceosome's architecture between the catalytic steps of splicing, and how proteins aid formation of the spliceosome's catalytically active RNP (ribonucleoprotein) conformation. It reveals the spatial organization of the metazoan-specific proteins PPWD1, WDR70, FRG1, and CIR1 in human C complexes, indicating they stabilize functionally important protein domains and RNA structures rearranged/repositioned during the Bact to C transition. Structural comparisons with human Bact, C∗, and P complexes reveal an intricate cascade of RNP rearrangements during splicing catalysis, with intermediate RNP conformations not found in yeast, and additionally elucidate the structural basis for the sequential recruitment of metazoan-specific spliceosomal proteins.


Asunto(s)
Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , Empalmosomas/metabolismo , Animales , Catálisis , Células HeLa , Humanos , Intrones/genética , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Unión Proteica , Estabilidad Proteica , ARN/química , ARN/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie , Factores de Tiempo
7.
Nature ; 596(7871): 296-300, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34349264

RESUMEN

During the splicing of introns from precursor messenger RNAs (pre-mRNAs), the U2 small nuclear ribonucleoprotein (snRNP) must undergo stable integration into the spliceosomal A complex-a poorly understood, multistep process that is facilitated by the DEAD-box helicase Prp5 (refs. 1-4). During this process, the U2 small nuclear RNA (snRNA) forms an RNA duplex with the pre-mRNA branch site (the U2-BS helix), which is proofread by Prp5 at this stage through an unclear mechanism5. Here, by deleting the branch-site adenosine (BS-A) or mutating the branch-site sequence of an actin pre-mRNA, we stall the assembly of spliceosomes in extracts from the yeast Saccharomyces cerevisiae directly before the A complex is formed. We then determine the three-dimensional structure of this newly identified assembly intermediate by cryo-electron microscopy. Our structure indicates that the U2-BS helix has formed in this pre-A complex, but is not yet clamped by the HEAT domain of the Hsh155 protein (Hsh155HEAT), which exhibits an open conformation. The structure further reveals a large-scale remodelling/repositioning of the U1 and U2 snRNPs during the formation of the A complex that is required to allow subsequent binding of the U4/U6.U5 tri-snRNP, but that this repositioning is blocked in the pre-A complex by the presence of Prp5. Our data suggest that binding of Hsh155HEAT to the bulged BS-A of the U2-BS helix triggers closure of Hsh155HEAT, which in turn destabilizes Prp5 binding. Thus, Prp5 proofreads the branch site indirectly, hindering spliceosome assembly if branch-site mutations prevent the remodelling of Hsh155HEAT. Our data provide structural insights into how a spliceosomal helicase enhances the fidelity of pre-mRNA splicing.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Precursores del ARN/química , Precursores del ARN/genética , Empalme del ARN , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Empalmosomas/enzimología , Actinas/genética , Adenosina/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/ultraestructura , Modelos Moleculares , Mutación , Dominios Proteicos , Precursores del ARN/metabolismo , Precursores del ARN/ultraestructura , Empalme del ARN/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Empalmosomas/química , Empalmosomas/metabolismo
8.
EMBO Rep ; 25(5): 2391-2417, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605278

RESUMEN

ELYS is a nucleoporin that localizes to the nuclear side of the nuclear pore complex (NPC) in interphase cells. In mitosis, it serves as an assembly platform that interacts with chromatin and then with nucleoporin subcomplexes to initiate post-mitotic NPC assembly. Here we identify ELYS as a major binding partner of the membrane protein VAPB during mitosis. In mitosis, ELYS becomes phosphorylated at many sites, including a predicted FFAT (two phenylalanines in an acidic tract) motif, which mediates interaction with the MSP (major sperm protein)-domain of VAPB. Binding assays using recombinant proteins or cell lysates and co-immunoprecipitation experiments show that VAPB binds the FFAT motif of ELYS in a phosphorylation-dependent manner. In anaphase, the two proteins co-localize to the non-core region of the newly forming nuclear envelope. Depletion of VAPB results in prolonged mitosis, slow progression from meta- to anaphase and in chromosome segregation defects. Together, our results suggest a role of VAPB in mitosis upon recruitment to or release from ELYS at the non-core region of the chromatin in a phosphorylation-dependent manner.


Asunto(s)
Proteínas de Unión al ADN , Mitosis , Unión Proteica , Factores de Transcripción , Proteínas de Transporte Vesicular , Humanos , Anafase , Cromatina/metabolismo , Segregación Cromosómica , Células HeLa , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Fosforilación , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Transporte Vesicular/metabolismo
9.
Nature ; 583(7815): 310-313, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32494006

RESUMEN

The U2 small nuclear ribonucleoprotein (snRNP) has an essential role in the selection of the precursor mRNA branch-site adenosine, the nucleophile for the first step of splicing1. Stable addition of U2 during early spliceosome formation requires the DEAD-box ATPase PRP52-7. Yeast U2 small nuclear RNA (snRNA) nucleotides that form base pairs with the branch site are initially sequestered in a branchpoint-interacting stem-loop (BSL)8, but whether the human U2 snRNA folds in a similar manner is unknown. The U2 SF3B1 protein, a common mutational target in haematopoietic cancers9, contains a HEAT domain (SF3B1HEAT) with an open conformation in isolated SF3b10, but a closed conformation in spliceosomes11, which is required for stable interaction between U2 and the branch site. Here we report a 3D cryo-electron microscopy structure of the human 17S U2 snRNP at a core resolution of 4.1 Å and combine it with protein crosslinking data to determine the molecular architecture of this snRNP. Our structure reveals that SF3B1HEAT interacts with PRP5 and TAT-SF1, and maintains its open conformation in U2 snRNP, and that U2 snRNA forms a BSL that is sandwiched between PRP5, TAT-SF1 and SF3B1HEAT. Thus, substantial remodelling of the BSL and displacement of BSL-interacting proteins must occur to allow formation of the U2-branch-site helix. Our studies provide a structural explanation of why TAT-SF1 must be displaced before the stable addition of U2 to the spliceosome, and identify RNP rearrangements facilitated by PRP5 that are required for stable interaction between U2 and the branch site.


Asunto(s)
Microscopía por Crioelectrón , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/ultraestructura , Secuencia de Bases , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Unión Proteica , Conformación Proteica , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Transactivadores/química , Transactivadores/metabolismo
10.
Mol Cell ; 69(6): 979-992.e6, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29547724

RESUMEN

Human nineteen complex (NTC) acts as a multimeric E3 ubiquitin ligase in DNA repair and splicing. The transfer of ubiquitin is mediated by Prp19-a homotetrameric component of NTC whose elongated coiled coils serve as an assembly axis for two other proteins called SPF27 and CDC5L. We find that Prp19 is inactive on its own and have elucidated the structural basis of its autoinhibition by crystallography and mutational analysis. Formation of the NTC core by stepwise assembly of SPF27, CDC5L, and PLRG1 onto the Prp19 tetramer enables ubiquitin ligation. Protein-protein crosslinking of NTC, functional assays in vitro, and assessment of its role in DNA damage response provide mechanistic insight into the organization of the NTC core and the communication between PLRG1 and Prp19 that enables E3 activity. This reveals a unique mode of regulation for a complex E3 ligase and advances understanding of its dynamics in various cellular pathways.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Proteínas Nucleares/metabolismo , Factores de Empalme de ARN/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Cristalización , Daño del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Moleculares , Mutación , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformación Proteica , Factores de Empalme de ARN/química , Factores de Empalme de ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteína de Replicación A/metabolismo , Células Sf9 , Spodoptera , Relación Estructura-Actividad , Ubiquitinación , Repeticiones WD40
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA