Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sci Technol Adv Mater ; 13(2): 025007, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27877485

RESUMEN

We report a novel, sputtering-based fabrication method of Al2O3 gate insulators on graphene. Electrical performance of dual-gated mono- and bilayer exfoliated graphene devices is presented. Sputtered Al2O3 layers possess comparable quality to oxides obtained by atomic layer deposition with respect to a high relative dielectric constant of about 8, as well as low-hysteresis performance and high breakdown voltage. We observe a moderate carrier mobility of about 1000 cm2 V-1 s-1 in monolayer graphene and 350 cm2 V-1 s-1 in bilayer graphene, respectively. The mobility decrease can be attributed to the resonant scattering on atomic-scale defects, likely originating from the Al precursor layer evaporated prior to sputtering.

2.
Nanotechnology ; 22(6): 062001, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21212479

RESUMEN

This review paper summarizes the European nanometrology landscape from a technical perspective. Dimensional and chemical nanometrology are discussed first as they underpin many of the developments in other areas of nanometrology. Applications for the measurement of thin film parameters are followed by two of the most widely relevant families of functional properties: measurement of mechanical and electrical properties at the nanoscale. Nanostructured materials and surfaces, which are seen as key materials areas having specific metrology challenges, are covered next. The final section describes biological nanometrology, which is perhaps the most interdisciplinary applications area, and presents unique challenges. Within each area, a review is provided of current status, the capabilities and limitations of current techniques and instruments, and future directions being driven by emerging industrial measurement requirements. Issues of traceability, standardization, national and international programmes, regulation and skills development will be discussed in a future paper.

3.
J Phys Condens Matter ; 27(18): 185303, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25894386

RESUMEN

The electrical transport properties of epitaxial graphene layers are correlated with the SiC surface morphology. In this study we show by atomic force microscopy and Raman measurements that the surface morphology and the structure of the epitaxial graphene layers change significantly when different pretreatment procedures are applied to nearly on-axis 6H-SiC(0 0 0 1) substrates. It turns out that the often used hydrogen etching of the substrate is responsible for undesirable high macro-steps evolving during graphene growth. A more advantageous type of sub-nanometer stepped graphene layers is obtained with a new method: a high-temperature conditioning of the SiC surface in argon atmosphere. The results can be explained by the observed graphene buffer layer domains after the conditioning process which suppress giant step bunching and graphene step flow growth. The superior electronic quality is demonstrated by a less extrinsic resistance anisotropy obtained in nano-probe transport experiments and by the excellent quantization of the Hall resistance in low-temperature magneto-transport measurements. The quantum Hall resistance agrees with the nominal value (half of the von Klitzing constant) within a standard deviation of 4.5 × 10(-9) which qualifies this method for the fabrication of electrical quantum standards.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA