Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 603(7902): 654-660, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296861

RESUMEN

Magnetic resonance imaging (MRI) has transformed our understanding of the human brain through well-replicated mapping of abilities to specific structures (for example, lesion studies) and functions1-3 (for example, task functional MRI (fMRI)). Mental health research and care have yet to realize similar advances from MRI. A primary challenge has been replicating associations between inter-individual differences in brain structure or function and complex cognitive or mental health phenotypes (brain-wide association studies (BWAS)). Such BWAS have typically relied on sample sizes appropriate for classical brain mapping4 (the median neuroimaging study sample size is about 25), but potentially too small for capturing reproducible brain-behavioural phenotype associations5,6. Here we used three of the largest neuroimaging datasets currently available-with a total sample size of around 50,000 individuals-to quantify BWAS effect sizes and reproducibility as a function of sample size. BWAS associations were smaller than previously thought, resulting in statistically underpowered studies, inflated effect sizes and replication failures at typical sample sizes. As sample sizes grew into the thousands, replication rates began to improve and effect size inflation decreased. More robust BWAS effects were detected for functional MRI (versus structural), cognitive tests (versus mental health questionnaires) and multivariate methods (versus univariate). Smaller than expected brain-phenotype associations and variability across population subsamples can explain widespread BWAS replication failures. In contrast to non-BWAS approaches with larger effects (for example, lesions, interventions and within-person), BWAS reproducibility requires samples with thousands of individuals.


Asunto(s)
Mapeo Encefálico , Encéfalo , Imagen por Resonancia Magnética , Mapeo Encefálico/métodos , Cognición , Conjuntos de Datos como Asunto , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Fenotipo , Reproducibilidad de los Resultados
2.
J Cogn Neurosci ; : 1-19, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38739568

RESUMEN

Socially guided visual attention, such as gaze following and joint attention, represents the building block of higher-level social cognition in primates, although their neurodevelopmental processes are still poorly understood. Atypical development of these social skills has served as early marker of autism spectrum disorder and Williams syndrome. In this study, we trace the developmental trajectories of four neural networks underlying visual and attentional social engagement in the translational rhesus monkey model. Resting-state fMRI (rs-fMRI) data and gaze following skills were collected in infant rhesus macaques from birth through 6 months of age. Developmental trajectories from subjects with both resting-state fMRI and eye-tracking data were used to explore brain-behavior relationships. Our findings indicate robust increases in functional connectivity (FC) between primary visual areas (primary visual cortex [V1] - extrastriate area 3 [V3] and V3 - middle temporal area, ventral motion areas middle temporal area - AST, as well as between TE and amygdala (AMY) as infants mature. Significant FC decreases were found in more rostral areas of the pathways, such as areas temporal area occipital part - TE in the ventral object pathway, V3 - lateral intraparietal (LIP) of the dorsal visual attention pathway and V3 - temporo-parietal area of the ventral attention pathway. No changes in FC were found between cortical areas LIP-FEF and temporo-parietal area - Area 12 of the dorsal and ventral attention pathways or between AST-AMY and AMY-insula. Developmental trajectory of gaze following revealed a period of dynamic changes with gradual increases from 1 to 2 months, followed by slight decreases from 3 to 6 months. Exploratory association findings across the 6-month period showed that infants with higher gaze following had lower FC between primary visual areas V1-V3, but higher FC in the dorsal attention areas V3-LIP, both in the right hemisphere. Together, the first 6 months of life in rhesus macaques represent a critical period for the emergence of gaze following skills associated with maturational changes in FC of socially guided attention pathways.

3.
Nat Methods ; 18(7): 775-778, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34155395

RESUMEN

Diffusion-weighted magnetic resonance imaging (dMRI) is the primary method for noninvasively studying the organization of white matter in the human brain. Here we introduce QSIPrep, an integrative software platform for the processing of diffusion images that is compatible with nearly all dMRI sampling schemes. Drawing on a diverse set of software suites to capitalize on their complementary strengths, QSIPrep facilitates the implementation of best practices for processing of diffusion images.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Humanos , Lenguajes de Programación , Flujo de Trabajo
4.
Cereb Cortex ; 33(15): 9250-9262, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37293735

RESUMEN

The thalamus is a critical relay center for neural pathways involving sensory, motor, and cognitive functions, including cortico-striato-thalamo-cortical and cortico-ponto-cerebello-thalamo-cortical loops. Despite the importance of these circuits, their development has been understudied. One way to investigate these pathways in human development in vivo is with functional connectivity MRI, yet few studies have examined thalamo-cortical and cerebello-cortical functional connectivity in development. Here, we used resting-state functional connectivity to measure functional connectivity in the thalamus and cerebellum with previously defined cortical functional networks in 2 separate data sets of children (7-12 years old) and adults (19-40 years old). In both data sets, we found stronger functional connectivity between the ventral thalamus and the somatomotor face cortical functional network in children compared with adults, extending previous cortico-striatal functional connectivity findings. In addition, there was more cortical network integration (i.e. strongest functional connectivity with multiple networks) in the thalamus in children than in adults. We found no developmental differences in cerebello-cortical functional connectivity. Together, these results suggest different maturation patterns in cortico-striato-thalamo-cortical and cortico-ponto-cerebellar-thalamo-cortical pathways.


Asunto(s)
Cerebelo , Imagen por Resonancia Magnética , Adulto , Niño , Humanos , Adulto Joven , Cerebelo/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Cuerpo Estriado
5.
Br J Anaesth ; 131(6): 1030-1042, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37714750

RESUMEN

BACKGROUND: Clinical studies suggest that anaesthesia exposure early in life affects neurobehavioural development. We designed a non-human primate (NHP) study to evaluate cognitive, behavioural, and brain functional and structural alterations after isoflurane exposure during infancy. These NHPs displayed decreased close social behaviour and increased astrogliosis in specific brain regions, most notably in the amygdala. Here we hypothesise that resting-state functional connectivity MRI can detect alterations in connectivity of brain areas that relate to these social behaviours and astrogliosis. METHODS: Imaging was performed in 2-yr-old NHPs under light anaesthesia, after early-in-life (postnatal days 6-12) exposure to 5 h of isoflurane either one or three times, or to room air. Brain images were segmented into 82 regions of interest; the amygdala and the posterior cingulate cortex were chosen for a seed-based resting-state functional connectivity MRI analysis. RESULTS: We found differences between groups in resting-state functional connectivity of the amygdala and the auditory cortices, medial premotor cortex, and posterior cingulate cortex. There were also alterations in resting-state functional connectivity between the posterior cingulate cortex and secondary auditory, polar prefrontal, and temporal cortices, and the anterior insula. Relationships were identified between resting-state functional connectivity alterations and the decrease in close social behaviour and increased astrogliosis. CONCLUSIONS: Early-in-life anaesthesia exposure in NHPs is associated with resting-state functional connectivity alterations of the amygdala and the posterior cingulate cortex with other brain regions, evident at the juvenile age of 2 yr. These changes in resting-state functional connectivity correlate with the decrease in close social behaviour and increased astrogliosis. Using resting-state functional connectivity MRI to study the neuronal underpinnings of early-in-life anaesthesia-induced behavioural alterations could facilitate development of a biomarker for anaesthesia-induced developmental neurotoxicity.


Asunto(s)
Isoflurano , Animales , Isoflurano/efectos adversos , Gliosis , Encéfalo/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Primates , Mapeo Encefálico/métodos , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología
7.
Neuroimage ; 255: 119215, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35436615

RESUMEN

As public access to longitudinal developmental datasets like the Adolescent Brain Cognitive Development StudySM (ABCD Study®) increases, so too does the need for resources to benchmark time-dependent effects. Scan-to-scan changes observed with repeated imaging may reflect development but may also reflect practice effects, day-to-day variability in psychological states, and/or measurement noise. Resources that allow disentangling these time-dependent effects will be useful in quantifying actual developmental change. We present an accelerated adult equivalent of the ABCD Study dataset (a-ABCD) using an identical imaging protocol to acquire magnetic resonance imaging (MRI) structural, diffusion-weighted, resting-state and task-based data from eight adults scanned five times over five weeks. We report on the task-based imaging data (n = 7). In-scanner stop-signal (SST), monetary incentive delay (MID), and emotional n-back (EN-back) task behavioral performance did not change across sessions. Post-scan recognition memory for emotional n-back stimuli, however, did improve as participants became more familiar with the stimuli. Functional MRI analyses revealed that patterns of task-based activation reflecting inhibitory control in the SST, reward success in the MID task, and working memory in the EN-back task were more similar within individuals across repeated scan sessions than between individuals. Within-subject, activity was more consistent across sessions during the EN-back task than in the SST and MID task, demonstrating differences in fMRI data reliability as a function of task. The a-ABCD dataset provides a unique testbed for characterizing the reliability of brain function, structure, and behavior across imaging modalities in adulthood and benchmarking neurodevelopmental change observed in the open-access ABCD Study.


Asunto(s)
Encéfalo , Neuroimagen , Adolescente , Adulto , Encéfalo/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Memoria a Corto Plazo/fisiología , Reproducibilidad de los Resultados
8.
Neuroimage ; 247: 118838, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34942363

RESUMEN

The importance of motion correction when processing resting state functional magnetic resonance imaging (rs-fMRI) data is well-established in adult cohorts. This includes adjustments based on self-limited, large amplitude subject head motion, as well as factitious rhythmic motion induced by respiration. In adults, such respiration artifact can be effectively removed by applying a notch filter to the motion trace, resulting in higher amounts of data retained after frame censoring (e.g., "scrubbing") and more reliable correlation values. Due to the unique physiological and behavioral characteristics of infants and toddlers, rs-fMRI processing pipelines, including methods to identify and remove colored noise due to subject motion, must be appropriately modified to accurately reflect true neuronal signal. These younger cohorts are characterized by higher respiration rates and lower-amplitude head movements than adults; thus, the presence and significance of comparable respiratory artifact and the subsequent necessity of applying similar techniques remain unknown. Herein, we identify and characterize the consistent presence of respiratory artifact in rs-fMRI data collected during natural sleep in infants and toddlers across two independent cohorts (aged 8-24 months) analyzed using different pipelines. We further demonstrate how removing this artifact using an age-specific notch filter allows for both improved data quality and data retention in measured results. Importantly, this work reveals the critical need to identify and address respiratory-driven head motion in fMRI data acquired in young populations through the use of age-specific motion filters as a mechanism to optimize the accuracy of measured results in this population.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Neuroimagen/métodos , Artefactos , Conectoma/métodos , Femenino , Movimientos de la Cabeza , Humanos , Lactante , Masculino , Respiración , Sueño
9.
J Neurosci ; 40(26): 5090-5104, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32451322

RESUMEN

Working memory function changes across development and varies across individuals. The patterns of behavior and brain function that track individual differences in working memory during human development, however, are not well understood. Here, we establish associations between working memory, other cognitive abilities, and functional MRI (fMRI) activation in data from over 11,500 9- to 10-year-old children (both sexes) enrolled in the Adolescent Brain Cognitive Development (ABCD) Study, an ongoing longitudinal study in the United States. Behavioral analyses reveal robust relationships between working memory, short-term memory, language skills, and fluid intelligence. Analyses relating out-of-scanner working memory performance to memory-related fMRI activation in an emotional n-back task demonstrate that frontoparietal activity during a working memory challenge indexes working memory performance. This relationship is domain specific, such that fMRI activation related to emotion processing during the emotional n-back task, inhibitory control during a stop-signal task (SST), and reward processing during a monetary incentive delay (MID) task does not track memory abilities. Together, these results inform our understanding of individual differences in working memory in childhood and lay the groundwork for characterizing the ways in which they change across adolescence.SIGNIFICANCE STATEMENT Working memory is a foundational cognitive ability that changes over time and varies across individuals. Here, we analyze data from over 11,500 9- to 10-year-olds to establish relationships between working memory, other cognitive abilities, and frontoparietal brain activity during a working memory challenge, but not during other cognitive challenges. Our results lay the groundwork for assessing longitudinal changes in working memory and predicting later academic and other real-world outcomes.


Asunto(s)
Encéfalo/fisiología , Desarrollo Infantil/fisiología , Memoria a Corto Plazo/fisiología , Encéfalo/crecimiento & desarrollo , Niño , Femenino , Humanos , Individualidad , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino
10.
J Child Psychol Psychiatry ; 62(10): 1202-1219, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33748971

RESUMEN

OBJECTIVE: Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. METHODS: We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. RESULTS: There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing. CONCLUSION: Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Núcleo Caudado , Niño , Humanos , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA