Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 31(Pt 1): 55-64, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37930257

RESUMEN

X-ray photon correlation spectroscopy (XPCS) holds strong promise for observing atomic-scale dynamics in materials, both at equilibrium and during non-equilibrium transitions. Here an in situ XPCS study of the relaxor ferroelectric PbMg1/3Nb2/3O3 (PMN) is reported. A weak applied AC electric field generates strong response in the speckle of the diffuse scattering from the polar nanodomains, which is captured using the two-time correlation function. Correlated motions of the Bragg peak are also observed, which indicate dynamic tilting of the illuminated volume. This tilting quantitatively accounts for the observed two-time speckle correlations. The magnitude of the tilting would not be expected solely from the modest applied field, since PMN is an electrostrictive material with no linear strain response to the field. A model is developed based on non-uniform static charging of the illuminated surface spot by the incident micrometre-scale X-ray beam and the electrostrictive material response to the combination of static and dynamic fields. The model qualitatively explains the direction and magnitude of the observed tilting, and predicts that X-ray-induced piezoresponse could be an important factor in correctly interpreting results from XPCS and nanodiffraction studies of other insulating materials under applied AC field or varying X-ray illumination.

2.
J Synchrotron Radiat ; 25(Pt 4): 1036-1047, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979165

RESUMEN

In anticipation of the increased use of coherent X-ray methods and the need to upgrade beamlines to match improved source quality, here the coherence properties of the X-rays delivered by beamline 12ID-D at the Advanced Photon Source have been characterized. The measured X-ray divergence, beam size, brightness and coherent flux at energies up to 26 keV are compared with the calculated values from the undulator source, and the effects of beamline optics such as a mirror, monochromator and compound refractive lenses are evaluated. Diffraction patterns from slits as a function of slit width are analyzed using wave propagation theory to obtain the beam divergence and thus coherence length. Imaging of the source using a compound refractive lens was found to be the most accurate method for determining the vertical divergence. While the brightness and coherent flux obtained without a monochromator (`pink beam') agree well with those calculated for the source, those measured with the monochromator were a factor of three to six lower than the source, primarily because of vertical divergence introduced by the monochromator. The methods described herein should be widely applicable for measuring the X-ray coherence properties of synchrotron beamlines.

3.
Nat Mater ; 21(8): 845-847, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35896825
4.
Nat Commun ; 12(1): 1721, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741925

RESUMEN

The stacking sequence of hexagonal close-packed and related crystals typically results in steps on vicinal {0001} surfaces that have alternating A and B structures with different growth kinetics. However, because it is difficult to experimentally identify which step has the A or B structure, it has not been possible to determine which has faster adatom attachment kinetics. Here we show that in situ microbeam surface X-ray scattering can determine whether A or B steps have faster kinetics under specific growth conditions. We demonstrate this for organo-metallic vapor phase epitaxy of (0001) GaN. X-ray measurements performed during growth find that the average width of terraces above A steps increases with growth rate, indicating that attachment rate constants are higher for A steps, in contrast to most predictions. Our results have direct implications for understanding the atomic-scale mechanisms of GaN growth and can be applied to a wide variety of related crystals.

5.
Phys Rev Lett ; 105(16): 167601, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21231014

RESUMEN

Polarization switching in ferroelectrics has been thought to occur only through the nucleation and growth of new domains. Here we use in situ synchrotron x-ray scattering to monitor switching controlled by applied chemical potential. In sufficiently thin PbTiO3 films, nucleation is suppressed and switching occurs by a continuous mechanism, i.e., by uniform decrease and inversion of the polarization without domain formation. The observed lattice parameter shows that the electric field in the film during switching reaches the theoretical intrinsic coercive field.

6.
Rev Sci Instrum ; 88(3): 035113, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28372371

RESUMEN

We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

7.
Nat Commun ; 7: 11892, 2016 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-27283250

RESUMEN

Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment.

8.
ACS Nano ; 8(2): 1584-9, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24417284

RESUMEN

The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. However, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few orders of magnitude, depending on the intensity of impinging X-rays. We found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. Understanding X-ray-controlled reversible resistance changes can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.

9.
Nat Commun ; 5: 4191, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24939393

RESUMEN

In developing cost-effective complex oxide materials for the oxygen evolution reaction, it is critical to establish the missing links between structure and function at the atomic level. The fundamental and practical implications of the relationship on any oxide surface are prerequisite to the design of new stable and active materials. Here we report an intimate relationship between the stability and reactivity of oxide catalysts in exploring the reaction on strontium ruthenate single-crystal thin films in alkaline environments. We determine that for strontium ruthenate films with the same conductance, the degree of stability, decreasing in the order (001)>(110)>(111), is inversely proportional to the activity. Both stability and reactivity are governed by the potential-induced transformation of stable Ru(4+) to unstable Ru(n>4+). This ordered(Ru(4+))-to-disordered(Ru(n>4+)) transition and the development of active sites for the reaction are determined by a synergy between electronic and morphological effects.

10.
Adv Mater ; 24(48): 6423-8, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23034879

RESUMEN

Atomic layer engineering enables fabrication of a chemically sharp oxide heterointerface. The interface formation and strain evolution during the initial growth of LaAlO(3) /SrTiO(3) heterostructures by pulsed laser deposition are investigated in search of a means for controlling the atomic-sharpness of the interface. This study shows that inserting a monolayer of LaAlO(3) grown at high oxygen pressure dramatically enhances interface abruptness.


Asunto(s)
Compuestos de Calcio/química , Óxidos/química , Oxígeno/química , Titanio/química , Compuestos de Aluminio/química , Cinética , Lantano/química , Presión Parcial , Estroncio/química
11.
Science ; 304(5677): 1650-3, 2004 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-15192223

RESUMEN

Understanding the suppression of ferroelectricity in perovskite thin films is a fundamental issue that has remained unresolved for decades. We report a synchrotron x-ray study of lead titanate as a function of temperature and film thickness for films as thin as a single unit cell. At room temperature, the ferroelectric phase is stable for thicknesses down to 3 unit cells (1.2 nanometers). Our results imply that no thickness limit is imposed on practical devices by an intrinsic ferroelectric size effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA