Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 134(6): 956-68, 2008 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-18805089

RESUMEN

Cell polarization is an integral part of many unrelated bacterial processes. How intrinsic cell polarization is achieved is poorly understood. Here, we provide evidence that Caulobacter crescentus uses a multimeric pole-organizing factor (PopZ) that serves as a hub to concurrently achieve several polarizing functions. During chromosome segregation, polar PopZ captures the ParB*ori complex and thereby anchors sister chromosomes at opposite poles. This step is essential for stabilizing bipolar gradients of a cell division inhibitor and setting up division near midcell. PopZ also affects polar stalk morphogenesis and mediates the polar localization of the morphogenetic and cell cycle signaling proteins CckA and DivJ. Polar accumulation of PopZ, which is central to its polarizing activity, can be achieved independently of division and does not appear to be dictated by the pole curvature. Instead, evidence suggests that localization of PopZ largely relies on PopZ multimerization in chromosome-free regions, consistent with a self-organizing mechanism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/citología , Caulobacter crescentus/metabolismo , Cromosomas Bacterianos/metabolismo , Replicación del ADN , Escherichia coli/metabolismo , Origen de Réplica
2.
Mol Microbiol ; 68(3): 720-35, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18394147

RESUMEN

Formation of the Z ring is the first known event in bacterial cell division. However, it is not yet known how the assembly and contraction of the Z ring are regulated. Here, we identify a novel cell division factor ZapB in Escherichia coli that simultaneously stimulates Z ring assembly and cell division. Deletion of zapB resulted in delayed cell division and the formation of ectopic Z rings and spirals, whereas overexpression of ZapB resulted in nucleoid condensation and aberrant cell divisions. Localization of ZapB to the divisome depended on FtsZ but not FtsA, ZipA or FtsI, and ZapB interacted with FtsZ in a bacterial two-hybrid analysis. The simultaneous inactivation of FtsA and ZipA prevented Z ring assembly and ZapB localization. Time lapse microscopy showed that ZapB-GFP is present at mid-cell in a pattern very similar to that of FtsZ. Cells carrying a zapB deletion and the ftsZ84(ts) allele exhibited a synthetic sick phenotype and aberrant cell divisions. The crystal structure showed that ZapB exists as a dimer that is 100% coiled-coil. In vitro, ZapB self-assembled into long filaments and bundles. These results raise the possibility that ZapB stimulates Z ring formation directly via its capacity to self-assemble into larger structures.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , División Celular , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Modelos Moleculares , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia , Técnicas del Sistema de Dos Híbridos
3.
Trends Microbiol ; 15(3): 101-8, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17275310

RESUMEN

The recognition of bacterial asymmetry is not new: the first high-resolution microscopy studies revealed that bacteria come in a multitude of shapes and sometimes carry asymmetrically localized external structures such as flagella on the cell surface. Even so, the idea that bacteria could have an inherent overall polarity, which affects not only their outer appearance but also many of their vital processes, has only recently been appreciated. In this review, we focus on recent advances in our understanding of the molecular mechanisms underlying the establishment of polarized functions and cell polarity in bacteria.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Polaridad Celular , Bacterias/citología , Bacterias/metabolismo , Bacterias/patogenicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citoesqueleto/metabolismo , Regulación Bacteriana de la Expresión Génica , Transducción de Señal
4.
J Mol Biol ; 329(1): 35-43, 2003 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-12742016

RESUMEN

Prokaryotic plasmids encode partitioning (par) loci involved in segregation of DNA to daughter cells at cell division. A functional fusion protein consisting of Walker-type ParA ATPase and green fluorescent protein (Gfp) oscillates back and forth within nucleoid regions with a wave period of about 20 minutes. A model is discussed which is based on cooperative non-specific binding of ParA to the nucleoid, and local ParB initiated generation of ParA oligomer degradation products, which act autocatalytically on the degradation reaction. The model yields self-initiated spontaneous pattern formation, based on Turing's mechanism, and these patterns are destroyed by the degradation products, only to initiate a new pattern at the opposite nucleoid region. A recurrent wave thus emerges. This may be a particular example of a more general class of pattern forming mechanisms, based on protein oligomerization upon a template (membranes, DNA a.o.) with resulting enhanced NTPase function in the oligomer state, which may bring the oligomer into an unstable internal state. An effector initializes destabilization of the oligomer to yield degradation products, which act as seeds for further degradation in an autocatalytic process. We discuss this mechanism in relation to recent models for MinDE oscillations in E.coli and to microtubule degradation in mitosis. The study points to an ancestral role for the presented pattern types in generating bipolarity in prokaryotes and eukaryotes.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Segregación Cromosómica/genética , ADN Bacteriano/genética , Escherichia coli/genética , Proteínas Luminiscentes/genética , Microtúbulos/metabolismo , Proteínas Represoras/genética , Tubulina (Proteína)/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , División Celular , Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Proteínas Fluorescentes Verdes , Guanosina Trifosfato/metabolismo , Proteínas Luminiscentes/metabolismo , Mitosis , Modelos Moleculares , Regiones Operadoras Genéticas , Plásmidos , Células Procariotas , Proteínas Represoras/metabolismo , Tubulina (Proteína)/genética
5.
J Biol Chem ; 282(5): 3134-45, 2007 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-17092933

RESUMEN

The double par locus of Escherichia coli virulence factor pB171 consists of two adjacent and oppositely oriented par loci of different types, called par1 and par2. par1 encodes an actin ATPase (ParM), and par2 encodes an oscillating, MinD-like ATPase (ParA). The par loci share a central cis-acting region of approximately 200 bp, called parC1, located between the two par loci. An additional cis-acting region, parC2, is located downstream of the parAB operon of par2. Here we show that ParR of par1 and ParB of par2 bind cooperatively to unrelated sets of direct repeats in parC1 to form the cognate partition and promoter repression complexes. Surprisingly, ParB repressed transcription of the noncognate par operon, indicating cross-talk and possibly epistasis between the two systems. The par promoters, P1 and P2, affected each other negatively. The DNA binding activities of ParR and ParB correlated well with the observed transcriptional regulation of the par operons in vivo and in vitro. Integration host factor (IHF) was identified as a novel factor involved in par2-mediated plasmid partitioning.


Asunto(s)
Escherichia coli K12/genética , Plásmidos , Factores de Virulencia/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia de Bases , ADN Primasa , Cartilla de ADN , Endodesoxirribonucleasas/genética , Escherichia coli K12/enzimología , Escherichia coli K12/patogenicidad , Proteínas de Escherichia coli/genética , Exodesoxirribonucleasas/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Proteínas Recombinantes/química , Proteínas Represoras/genética
6.
Mol Microbiol ; 61(6): 1428-42, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16899080

RESUMEN

Centromere-like loci from bacteria segregate plasmids to progeny cells before cell division. The ParA ATPase (a MinD homologue) of the par2 locus from plasmid pB171 forms oscillating helical structures over the nucleoid. Here we show that par2 distributes plasmid foci regularly along the length of the cell even in cells with many plasmids. In vitro, ParA binds ATP and ADP and has a cooperative ATPase activity. Moreover, ParA forms ATP-dependent filaments and cables, suggesting that ParA can provide the mechanical force for the observed regular distribution of plasmids. ParA and ParB interact with each other in a bacterial two-hybrid assay but do not interact with FtsZ, eight other essential cell division proteins or MreB actin. Based on these observations, we propose a simple model for how oscillating ParA filaments can mediate regular cellular distribution of plasmids. The model functions without the involvement of partition-specific host cell receptors and is thus consistent with the striking observation that partition loci can function in heterologous host organisms.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Centrómero/metabolismo , Escherichia coli/genética , Plásmidos/metabolismo , Adenosina Trifosfatasas/análisis , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Plásmidos/análisis
7.
Annu Rev Genet ; 39: 453-79, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16285868

RESUMEN

Bacterial plasmids encode partitioning (par) loci that ensure ordered plasmid segregation prior to cell division. par loci come in two types: those that encode actin-like ATPases and those that encode deviant Walker-type ATPases. ParM, the actin-like ATPase of plasmid R1, forms dynamic filaments that segregate plasmids paired at mid-cell to daughter cells. Like microtubules, ParM filaments exhibit dynamic instability (i.e., catastrophic decay) whose regulation is an important component of the DNA segregation process. The Walker box ParA ATPases are related to MinD and form highly dynamic, oscillating filaments that are required for the subcellular movement and positioning of plasmids. The role of the observed ATPase oscillation is not yet understood. However, we propose a simple model that couples plasmid segregation to ParA oscillation. The model is consistent with the observed movement and localization patterns of plasmid foci and does not require the involvement of plasmid-specific host-encoded factors.


Asunto(s)
Plásmidos/genética , Plásmidos/fisiología , Actinas/química , Actinas/metabolismo , Segregación Cromosómica , Cromosomas Bacterianos/genética , ADN Bacteriano/fisiología , Silenciador del Gen
8.
Mol Microbiol ; 56(6): 1430-40, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15916596

RESUMEN

Summary Bacterial plasmids and chromosomes encode centromere-like partition loci that actively segregate DNA before cell division. The molecular mechanism behind DNA segregation in bacteria is largely unknown. Here we analyse the mechanism of partition-associated incompatibility for plasmid pB171, a phenotype associated with all known plasmid-encoded centromere loci. An R1 plasmid carrying par2 from plasmid pB171 was destabilized by the presence of an F plasmid carrying parC1, parC2 or the entire par2 locus of pB171. Strikingly, cytological double-labelling experiments revealed no evidence of long-lived pairing of plasmids. Instead, pure R1 and F foci were positioned along the length of the cell, and in a random order. Thus, our results raise the possibility that partition-mediated plasmid incompatibility is not caused by pairing of heterologous plasmids but instead by random positioning of pure plasmid clusters along the long axis of the cell. The strength of the incompatibility was correlated with the capability of the plasmids to compete for the mid-cell position.


Asunto(s)
Segregación Cromosómica/genética , Escherichia coli K12/genética , Plásmidos/genética , Proteínas Bacterianas/genética , Centrómero , Proteínas de Escherichia coli/genética , Factor F/genética , Regulación Bacteriana de la Expresión Génica , Microscopía Fluorescente , Factores R/genética
9.
Mol Microbiol ; 52(2): 385-98, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15066028

RESUMEN

The par2 locus of Escherichia coli plasmid pB171 encodes oscillating ATPase ParA, DNA binding protein ParB and two cis-acting DNA regions to which ParB binds (parC1 and parC2). Three independent techniques were used to investigate the subcellular localization of plasmids carrying par2. In cells with a single plasmid focus, the focus located preferentially at mid-cell. In cells with two foci, these located at quarter-cell positions. In the absence of ParB and parC1/parC2, ParA-GFP formed stationary helices extending from one end of the nucleoid to the other. In the presence of ParB and parC1/parC2, ParA-GFP oscillated in spiral-shaped structures. Amino acid substitutions in ParA simultaneously abolished ParA spiral formation, oscillation and either plasmid localization or plasmid separation at mid-cell. Therefore, our results suggest that ParA spirals position plasmids at the middle of the bacterial nucleoid and subsequently separate them into daughter cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/citología , Escherichia coli/genética , Mitosis , Plásmidos , Proteínas Bacterianas/genética , ADN Bacteriano/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
10.
Cell ; 116(3): 359-66, 2004 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-15016371

RESUMEN

Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the ParM protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome.


Asunto(s)
Bacterias/genética , Segregación Cromosómica/genética , Mitosis/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Adenosina Trifosfatasas/genética , Cromosomas Bacterianos/genética , ADN Bacteriano/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Factores R/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA